您好,欢迎访问江苏省农业科学院 机构知识库!

Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions

文献类型: 外文期刊

作者: Xia Xiudong 1 ; Wang Ying 1 ; Liu Xiaoli 1 ; Li Ying 1 ; Zhou Jianzhong 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agroprod Proc, Nanjing, Jiangsu, Peoples R China

关键词: Soymilk residue (Okara);Natural immobilization carrier;Lactobacillus plantarum;Fermented soymilk;Isoflavones;Survival;Simulated gastric and intestinal stresses

期刊名称:PEERJ ( 影响因子:2.984; 五年影响因子:3.369 )

ISSN: 2167-8359

年卷期: 2016 年 4 卷

页码:

收录情况: SCI

摘要: Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions.

  • 相关文献

[1]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

作者其他论文 更多>>