您好,欢迎访问江苏省农业科学院 机构知识库!

Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice

文献类型: 外文期刊

作者: Zhang, Y. D. 1 ; Zheng, J. 2 ; Liang, Z. K. 3 ; Liang, Y. L. 1 ; Peng, Z. H. 3 ; Wang, C. L. 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Agr, Nanjing, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Food Crops, Nanjing, Jiangsu, Peoples R China

3.Mississippi State Univ, Dept Biochem Mol Biol Plant Pathol & Entomol, Starkville, MS USA

关键词: Rice;Grain gene;Molecular markers;Verification;Effect evaluation

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2015 年 14 卷 4 期

页码:

收录情况: SCI

摘要: Grain size is an important trait that directly influences the yield of rice. Validation and evaluation of grain genes is important in rice genetic studies and for breeding. In a population of 240 recombinant inbred lines (RILs) derived from a cross between an extra-large grain japonica variety TD70 and a small grain indica variety Kasalath, we mapped 19 QTLs controlling grain traits. These QTLs included six cloned grain genes, namely, GW2, GS3, qSW5, qGL3, GS5, and GW8. All of the alleles with the optimal effects on grain size came from TD70, the variety with extra-large grains. To verify these gene loci, we cloned and sequenced GW2, GS3, GW5 (qSW5), qGL3, GS5, GW8, and TGW6 in TD70 and Kasalath, and found several functional polymorphisms in the sequences of the genes. New functional markers for the cloned genes were designed to identify parents and RILs. The contributions of these polymorphisms to the improvement in rice grain size traits were evaluated. Our results indicate that at least six functional polymorphisms have additive effects on grain shape and that one non-functional polymorphism in TGW6 affects grain shape in TD70. The newly designed markers will be useful in further studies to identify functional grain genes. Our findings provide insight into the control of grain size in rice, and they will be of value for improving rice grain yield.

  • 相关文献

[1]Characterization of the global transcriptome using Illumina sequencing and novel microsatellite marker information in seashore paspalum. Jia, Xinping,Deng, Yanming,Sun, Xiaobo,Liang, Lijian,Ye, Xiaoqing.

[2]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[3]Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Zhou, WC,Kolb, FL,Bai, GH,Domier, LL,Yao, JB.

[4]Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Ray, Rumiana,Kilian, Andrzej.

[5]Inheritance and Mechanism of Resistance to Rice Stripe Disease in cv. Zhendao 88, a Chinese Rice Cultivar. Zhou, Tong,Wang, Lei,Fan, Yongjian,Cheng, Zhaobang,Zhou, Yijun,Nelson, Scot C.,Hu, John S..

[6]Molecular markers linked to specific characteristics of Prunus persica (L.) batsch. Yu Mingliang,Ma Ruijuan,Shen Zhijun,Zhang Zhen. 2007

[7]Efficient identification of ornamental peach cultivars using RAPD markers with a manual cultivar identification diagram strategy. Han, J.,Wang, W. Y.,Leng, X. P.,Jiang, W. B.,Guo, L.,Yu, M. L.,Ma, R. J.. 2014

[8]An improved strategy based on RAPD markers efficiently identified 95 peach cultivars. Yu, M. L.,Ma, R. J.,Shen, Z. J.,Wang, W. Y.,Fang, G.,Wang, W. Y.,Fang, G.. 2012

[9]Development of a novel and efficient strategy for practical identification of Pyrus spp (Rosaceae) cultivars using RAPD fingerprints. Lin, J.,Chang, Y. H.,Wang, X. C.,Fang, J. G.,Wang, X. C.,Fang, J. G.. 2011

[10]Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage. Zhang, Changquan,Zhou, Lihui,Lu, Huwen,Zhou, Xingzhong,Qan, Yiting,Li, Qianfeng,Lu, Yan,Gu, Minghong,Liu, Qiaoquan,Zhou, Lihui,Zhu, Zhengbin.

[11]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

[12]Delivery of roxarsone via chicken diet -> chicken -> chicken manure -> soil -> rice plant. Lu, Weisheng,Bai, Cuihua,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin.

[13]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[14]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[15]Changes in Violaxanthin Deepoxidase Activity and Unsaturation of Thylakoid Membrane Lipids in Indica and Japonica Rice Under Chilling Condition and Strong Light. Ji, BH,Cao, YY,Xie, HS,Zhu, SQ,Ma, Q,Jian, DM.

[16]In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun.

[17]Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Ma, Jing,Lv, Chunfang,Xu, Minli,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen.

[18]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[19]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

[20]Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Feng, Huimin,Zhi, Yang,Li, Ran,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Xia, Xiudong.

作者其他论文 更多>>