The Endogenous Nitric Oxide Mediates Selenium-Induced Phytotoxicity by Promoting ROS Generation in Brassica rapa
文献类型: 外文期刊
作者: Chen, Yi 1 ; Mo, Hai-Zhen 3 ; Hu, Liang-Bin 3 ; Li, You-Qin 2 ; Chen, Jian 2 ; Yang, Li-Fei 1 ;
作者机构: 1.Nanjing Agr Univ, Coll Hort, Xinxiang, Henan Province, Peoples R China
2.Jiangsu Acad Agr Sci, Inst Food Qual & Safety, Nanjing, Jiangsu, Peoples R China
3.Henan Inst Sci & Technol, Dept Food Sci, Xinxiang, Henan Province, Peoples R China
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2014 年 9 卷 10 期
页码:
收录情况: SCI
摘要: Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.
- 相关文献
作者其他论文 更多>>
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation
-
Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in cotton, increasing defoliation at low temperatures
作者:Shu, Hongmei;Sun, Shangwen;Wang, Xiaojing;Yang, Changqin;Zhang, Guowei;Li, Zhikang;Liang, Ting;Liu, Ruixian;Chen, Jian;Han, Huanyong
关键词:cyclanilide; thidiazuron; cotton; low temperature; defoliation
-
Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants
作者:Li, Yong;Chen, Jian;Zhang, Leigang;Cheng, Jinjin;Yu, Xiangyang;Li, Yong;Zhang, Kaiwei;Chen, Jian;Zhang, Leigang;Feng, Fayun;Cheng, Jinjin;Ma, Liya;Li, Mei;Wang, Ya;Yu, Xiangyang;Yu, Xiangyang;Jiang, Wayne
关键词:microbial compensatory; pesticides; rhizospherebacteria; root exudates; plant growth
-
Eugenol improves salt tolerance via enhancing antioxidant capacity and regulating ionic balance in tobacco seedlings
作者:Xu, Jiaxin;Wang, Tingting;Liu, Peng;Hou, Xin;Yu, Tao;Gao, Yun;Liu, Zhiguo;Yang, Long;Zhang, Li;Sun, Changwei;Chen, Jian
关键词:eugenol; oxidative stress; reactive oxygens species; redox homeostasis; salt stress; tobacco
-
Thymol Deploys Multiple Antioxidative Systems to Suppress ROS Accumulation in Chinese Cabbage Seedlings under Saline Stress
作者:Sun, Changwei;Wang, Lanlan;Yang, Lifei;Chen, Jian;Shi, Zhiqi;Yu, Xiangyang;Li, Jiajun
关键词:antioxidant; biostimulant; Chinese cabbage; oxidative stress; ROS; salinity; thymol
-
Cinnamaldehyde Inhibits Postharvest Gray Mold on Pepper Fruits via Inhibiting Fungal Growth and Triggering Fruit Defense
作者:Yang, Lifei;Liu, Xiaoli;Liu, Xiaoli;Lu, Haiyan;Zhang, Cunzheng;Chen, Jian;Shi, Zhiqi
关键词:antifungal; Botrytis cinerea; cinnamaldehyde; gray mold; induced defense; pepper fruit
-
Effect of Selenium Application on Growth, Antioxidative Capacity, and Nutritional Quality in Purple Lettuce Seedlings
作者:Huang, Sijie;Ying, Zhengzheng;Yang, Lifei;Huang, Sijie;Yang, Yuwen;Zhang, Jibing;Liu, Mingqing;Chen, Jian
关键词:Lactuca sativa; biofortification; selenite; reactive oxygen species; antioxidant enzymes; anthocyanin; chalcone synthase