GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants
文献类型: 外文期刊
作者: Chen, Huatao 1 ; Chen, Xin 1 ; Gu, Heping 1 ; Wu, Bingyue 1 ; Zhang, Hongmei 1 ; Yuan, Xingxing 1 ; Cui, Xiaoyan 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Inst Vegetable Crops, Nanjing 210014, Jiangsu, Peoples R China
关键词: Soybean;GmHKTs;Alkaline stress;Saline stress
期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )
ISSN: 0167-6903
年卷期: 2014 年 73 卷 3 期
页码:
收录情况: SCI
摘要: Salt is an important factor affecting the growth and development of soybean in saline or alkaline soil. The aims of the present study were to identify and functionally analyse the soybean GmHKTs gene family, and to explore their roles under NaHCO3 and NaCl stresses. The GmHKTs gene family were isolated from soybean using genome sequence information. The GmHKTs gene family were further analysed for the structure and phylogenetic relationship. The expression patterns of soybean GmHKTs genes under NaHCO3 and NaCl stresses were analysed via quantitative real-time PCR. As a result, the expression level of GmHKT1;4 was extremely up regulated in root under each treatment. Overexpression of GmHKT1;4 significantly enhanced the tolerance of transgenic tobacco plants to NaHCO3 and NaCl stresses, compared with null plants. The overexpressed transgenic plants of this gene accomulated more K+ and less Na+ under salt stress, compaired with null plants. Our findings suggest that GmHKT1;4 plays an important role for regulation Na+/K+ ratio in roots under alkaline (NaHCO3) and saline (NaCl) stresses.
- 相关文献
作者其他论文 更多>>
-
Unraveling the key structural characteristics enhancing digestion resistance of wheat starch-mung bean hull polyphenols complexes
作者:Wang, Ziyin;Xu, Lujing;Teng, Cong;Chai, Zhi;Feng, Jin;Lu, Yifei;Hu, Xindi;Ma, Kaiyang;Li, Ying;Wang, Ziyin;Li, Ying;Yuan, Xingxing;Chen, Xin
关键词:Wheat starch; Mung bean hull polyphenols; Molecular interaction; Multi-scale structure; Digestibility
-
Soybean stay-green associated geminivirus: A serious threat to soybean production in China
作者:He, Hao;Li, Hao;Zhou, Xueping;Li, Fangfang;He, Hao;Cui, Xiaoyan;Wang, Yaqin;Zhou, Xueping;Xu, Yi
关键词:Soybean; Soybean stay-green associated geminivirus; (SoSGV); Soybean stay-green syndrome; Viral transmission; Viral epidemiology
-
Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean ( Vigna radiata L.) and potential mitigation strategy
作者:Wang, Yu;Li, Xin;Huang, Xueying;Lu, Qian;Qian, Meng;Shen, Zhenguo;Xia, Yan;Zhuang, Kai;Liu, Yanli;Peng, Yizhe;Chen, Xin;Peng, Kejian
关键词:Mung bean; Cadmium contamination; Cd 2+net influx; VrNramp5; Hairy root transformation
-
Knocking out artificially selected gene GmAOC4H8 improves germination in soybean
作者:Zhang, Wei;Li, Songsong;Xu, Wenjing;Wang, Qiong;Zhang, Hongmei;Liu, Xiaoqing;Chen, Xin;Chen, Huatao;Chen, Huatao;Xu, Donghe
关键词:
-
A phosphorylation-regulated NPF transporter determines salt tolerance by mediating chloride uptake in soybean plants
作者:Wu, Yunzhen;Yuan, Jingya;Shen, Like;Li, Zhuomeng;Cao, Hongwei;Zhu, Lin;Liu, Dan;Sun, Yalu;Zhang, Wenhua;Zhang, Qun;Wu, Yunzhen;Yuan, Jingya;Shen, Like;Li, Zhuomeng;Cao, Hongwei;Zhu, Lin;Liu, Dan;Sun, Yalu;Wang, Wubin;Zhang, Wenhua;Gai, Junyi;Zhang, Qun;Li, Qinxue;Jia, Qianru;Chen, Huatao;Kudla, Joerg
关键词:Chloride Homeostasis; NPF Transporters; Phosphorylation; Soybean; Salt Tolerance
-
Functional characterization of four soybean C2H2 zinc-finger genes in Phytophthora resistance
作者:Chen, Yuting;Liu, Xinyue;Zhou, Yanyan;Zheng, Yu;Xiao, Yating;Yuan, Xingxing;Yan, Qiang;Chen, Xin;Chen, Yuting;Liu, Xinyue;Zhou, Yanyan;Xiao, Yating;Yuan, Xingxing;Zheng, Yu;Chen, Xin
关键词:Soybean;
phytophthora root rot; GmZFP2; transcriptional repression -
VrMYB90 negatively regulates proanthocyanidin biosynthesis by repressing VrANR in mung bean (Vigna radiata L.)
作者:Bao, Changjian;Niu, Mengyang;Liu, Ze;Wu, Yukun;Cao, Beier;Zhou, Min;Shen, Zhenguo;Su, Nana;Yuan, Xingxing;Jia, Li;Cui, Jin
关键词:Anthocyanins; Flavonoids; Mung bean; Proanthocyanidins; Secondary metabolites;
VrANR ;VrMYB90



