您好,欢迎访问江苏省农业科学院 机构知识库!

A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace

文献类型: 外文期刊

作者: Chen, Cui-Xia 2 ; Cai, Shi-Bin 3 ; Bai, Gui-Hua 1 ;

作者机构: 1.Kansas State Univ, USDA ARS, Plant Sci & Entomol Res Unit, Manhattan, KS 66506 USA

2.Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA

3.Jiangsu Acad Agr Sci, Food Crop Inst, Nanjing 210014, Peoples R China

4.Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA

关键词: triticum aestivum;PHS resistance;wheat seed dormancy;SSR marker;QTL mapping

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN: 1380-3743

年卷期: 2008 年 21 卷 3 期

页码:

收录情况: SCI

摘要: Wheat pre-harvest sprouting (PHS) can cause significant reduction in yield and end-use quality of wheat grains in many wheat-growing areas worldwide. To identify a quantitative trait locus (QTL) for PHS resistance in wheat, seed dormancy and sprouting of matured spikes were investigated in a population of 162 recombinant inbred lines (RILs) derived from a cross between the white PHS-resistant Chinese landrace Totoumai A and the white PHS-susceptible cultivar Siyang 936. Following screening of 1,125 SSR primers, 236 were found to be polymorphic between parents, and were used to screen the mapping population. Both seed dormancy and PHS of matured spikes were evaluated by the percentage of germinated kernels under controlled moist conditions. Twelve SSR markers associated with both PHS and seed dormancy were located on the long arm of chromosome 4A. One QTL for both seed dormancy and PHS resistance was detected on chromosome 4AL. Two SSR markers, Xbarc 170 and Xgwm 397, are 9.14 cM apart, and flanked the QTL that explained 28.3% of the phenotypic variation for seed dormancy and 30.6% for PHS resistance. This QTL most likely contributed to both long seed dormancy period and enhanced PHS resistance. Therefore, this QTL is most likely responsible for both seed dormancy and PHS resistance. The SSR markers linked to the QTL can be used for marker-assisted selection of PHS-resistant white wheat cultivars.

  • 相关文献

[1]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[2]Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Liu, WH,Nie, H,Wang, SB,Li, X,He, ZT,Han, CG,Wang, JR,Chen, XL,Li, LH,Yu, JL. 2005

[3]Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Wang, Jianfei,Huang, Ji,Lan, Hongxia,Yin, Congfei,Wu, Yunyu,Tang, Haijuan,Zhang, Hongsheng,Wang, Cailin,Qian, Qian,Li, Jiayang,Li, Jiayang.

[4]Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Ren, Runsheng,Yang, Xingping,Ren, Runsheng,Foulkes, John,Mayes, Sean,Ray, Rumiana V..

[5]Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. Yang, Xueming,Ma, Jun,Li, Haobing,Liu, Chunji,Yang, Xueming,Ma, Hongxiang,Yao, Jinbao,Ma, Jun,Liu, Chunji.

[6]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[7]Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Dai, Jian,Dai, Jian,Bai, Guihua,Zhang, Dadong,Dai, Jian,Hong, Delin. 2013

[8]Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Wang, Xicheng,Yu, Xiaoqing,Zhao, Xiongwei,Luo, Na,Garvin, David F.,Garvin, David F.. 2017

[9]Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Liu, Xin,Yang, Lihua,Zhou, Xianyao,Lu, Yan,Zhang, Zengyan,Yang, Lihua,Ma, Lingjian,Zhou, Miaoping,Ma, Hongxiang.

[10]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[11]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[12]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[13]Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Shi, Gao Ling,Lou, Lai Qing,Li, Dao Jun,Hu, Zhu Bing,Cai, Qing Sheng,Shi, Gao Ling.

[14]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

[15]Selection and genetic improvement of pollen fertility restorer lines with Triticum timopheevii, cytoplasm in common wheat. Zhou, WC,Zhao, YH,Zou, ML,Wang, SW. 1999

[16]An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. Liu, Xin,Wang, Xindong,Zhou, Xianyao,Ye, Xingguo,Wei, Xuening,Zhou, Miaoping. 2012

[17]Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Cox, Thomas S.,Wu, Jizhong,Wang, Shuwen,Cai, Jin,Zhong, Qiaofeng,Fu, Bisheng,Cox, Thomas S.,Wang, Shuwen. 2017

[18]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

作者其他论文 更多>>