Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.)
文献类型: 外文期刊
作者: Liang, Qingzhi 1 ; Shang, Lianguang 1 ; Wang, Yumei 2 ; Hua, Jinping 1 ;
作者机构: 1.China Agr Univ, Minist Educ, Dept Plant Genet & Breeding, Key Lab Crop Heterosis & Utilizat, Beijing 100193, Peoples R China
2.Hubei Acad Agr Sci, Res Inst Cash Crops, Wuhan 430064, Hubei, Peoples R China
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2015 年 10 卷 11 期
页码:
收录情况: SCI
摘要: Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F-2: 3 and F-2: 4 populations derived from a hybrid 'Xinza No. 1'. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F-1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F-2: 3 and F-2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F-2: 3 population, and 19 QTLs showed overdominance in F-2: 4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive x additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton.
- 相关文献
作者其他论文 更多>>
-
Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population
作者:Zhang, Zhen;Li, Junwen;Jamshed, Muhammad;Shi, Yuzhen;Liu, Aiying;Gong, Juwu;Wang, Shufang;Zhang, Jianhong;Sun, Fuding;Jia, Fei;Ge, Qun;Fan, Liqiang;Zhang, Zhibin;Pan, Jingtao;Fan, Senmiao;Wang, Yanling;Liu, Ruixian;Deng, Xiaoying;Zou, Xianyan;Jiang, Xiao;Liu, Ping;Iqbal, Muhammad Sajid;Zhang, Chaojun;Shang, Haihong;Gong, Wankui;Yuan, Youlu;Xu, Aixia;Huang, Jinyong;Lu, Quanwei;Li, Pengtao;Zhang, Chuanyun;Zou, Juan;Chen, Hong;Tian, Qin;Jia, Xinhe;Wang, Baoqin;Ai, Nijiang;Feng, Guoli;Wang, Yumei;Hong, Mei;Li, Shilin;Lian, Wenming;Wu, Bo;Hua, Jinping
关键词:upland cotton; consensus genetic map; fibre quality; fibre yield; QTL clusters; genetic correlation; gene expression level
-
GhCIPK6aincreases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways
作者:Su, Ying;Guo, Anhui;Hua, Jinping;Huang, Yi;Wang, Yumei
关键词:CIPK; Salt stress; Co-expression; Upland cotton; Signaling pathway
-
Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population
作者:Zhang, Zhen;Li, Junwen;Jamshed, Muhammad;Shi, Yuzhen;Liu, Aiying;Gong, Juwu;Wang, Shufang;Zhang, Jianhong;Sun, Fuding;Jia, Fei;Ge, Qun;Fan, Liqiang;Zhang, Zhibin;Pan, Jingtao;Fan, Senmiao;Wang, Yanling;Liu, Ruixian;Deng, Xiaoying;Zou, Xianyan;Jiang, Xiao;Liu, Ping;Iqbal, Muhammad Sajid;Zhang, Chaojun;Shang, Haihong;Gong, Wankui;Yuan, Youlu;Xu, Aixia;Huang, Jinyong;Lu, Quanwei;Li, Pengtao;Zhang, Chuanyun;Zou, Juan;Chen, Hong;Tian, Qin;Jia, Xinhe;Wang, Baoqin;Ai, Nijiang;Feng, Guoli;Wang, Yumei;Hong, Mei;Li, Shilin;Lian, Wenming;Wu, Bo;Hua, Jinping
关键词:upland cotton; consensus genetic map; fibre quality; fibre yield; QTL clusters; genetic correlation; gene expression level
-
Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton
作者:Ma, Lingling;Ijaz, Babar;Hua, Jinping;Wang, Yumei
关键词:
-
Evolution of PEPC gene family in Gossypium reveals functional diversification and GhPEPC genes responding to abiotic stresses
作者:Zhao, Yanpeng;Guo, Anhui;Hua, Jinping;Wang, Yumei
关键词:Phosphoenolpyruvate carboxylase (PEPC); Gossypium; Evolution; Functional diversification; Abiotic stresses
-
Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium
作者:Zhao, Nan;Wang, Yumei;Hua, Jinping;Wang, Yumei
关键词:Gossypium; PPR gene family; phylogenetic analysis; cytoplasmic male sterility; restorer gene
-
The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool
作者:Zhao, Nan;Hua, Jinping;Wang, Yumei
关键词:mitochondrion; intergenomic gene transfer; nucleus; chloroplast; genome evolution