您好,欢迎访问中国热带农业科学院 机构知识库!

Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection

文献类型: 外文期刊

作者: Wang, Hui 1 ; Chen, Zhijian 2 ; Liu, Guodao 2 ; Bai, Changjun 2 ; Qiu, Hong 2 ; Jia, Yanxing 1 ; Luo, Lijuan 1 ;

作者机构: 1.Hainan Univ, Coll Agr, Haikou 570110, Hainan, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Trop Crop Genet Resources, Danzhou 571737, Peoples R China

关键词: Stylosanthes;Anthracnose;Colletotrichum gloeosporioides;Antioxidant system;Gene expression;Stress response

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN: 0981-9428

年卷期: 2017 年 118 卷

页码:

收录情况: SCI

摘要: Anthracnose caused by Colletotrichum gloeosporioides is one of the most destructive fungal diseases of many plants, including stylo (Stylosanthes spp.), which is an important tropical forage legume. Although C. gloeosporioides-caused anthracnose is the major constraint limiting the growth and yield of stylo, little information is available regarding the responses of stylo during the infection process of this pathogen. This study investigated the changes in growth, the antioxidant system and gene expression in stylo in response to C. gloeosporioides treatment. Negative effects of C gloeosporioides were observed in inoculated stylo plants, as reflected by the formation of necrotic disease lesions and the decrease in shoot fresh weight. Reactive oxygen species (ROS) accumulation increased in stylo leaves during the C. gloeosporioides infection process. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX) and glutathione reductase (GR), as well as the concentrations of the antioxidant compounds ascorbate (AsA) and glutathione (GSH), increased in leaves under C gloeosporioides treatment. Furthermore, transcriptional analysis showed that the expression of stress response genes, including NADPH oxidase (Nox), thioredoxin (Thi), pathogenesis related genes (PR1 and PR5), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), chalcone synthase (CHS) and chitinase (Cht), was differentially enhanced in stylo leaves by C. gloeosporioides. Taken together, this study provides novel information regarding the alterations during the infection process of C gloeosporioides in stylo at the levels of antioxidant system and gene expression. (C) 2017 Elsevier Masson SAS. All rights reserved.

  • 相关文献

[1]Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Cai, Zhiying,Cai, Zhiying,Lin, Chunhua,Shi, Tao,Chen, Yipeng,Huang, Guixiu,Cai, Zhiying,Li, Guohua,Zhai, Ligang. 2013

[2]beta-Aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Zhang, Zhengke,Gao, Zhaoyin,Li, Min,Hu, Meijiao,Yang, Dongping,Yang, Bo,Zhang, Zhengke,Jiang, Yueming. 2013

[3]Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice. Wei, Yunxie,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Hu, Wei,Chen, Lanzhen. 2016

[4]Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. Xiao, Xiaohu,Tang, Chaorong,Fang, Yongjun,Zhou, Binhui,Qi, Jiyan,Zhang, Yi,Xiao, Xiaohu,Zhou, Binhui,Zhang, Yi,Yang, Meng. 2014

[5]咪鲜胺和吡唑醚菌酯对杧果炭疽病菌的复配作用研究. 钟祯凯,康浩,吴诚,杨石有,刘晓妹. 2017

[6]解淀粉芽胞杆菌JNC2摇瓶发酵条件优化. 梁艳琼,吴伟怀,习金根,李锐,郑金龙,黄兴,贺春萍,易克贤. 2019

[7]咪鲜胺和吡唑醚菌酯对杜果炭疽病菌的复配作用研究. 钟祯凯,康浩,吴诚,杨石有,刘晓妹,蒲金基,谢艺贤,张贺. 2017

[8]High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. Dong, Rongshu,Zhang, Jie,Huan, Hengfu,Bai, Changjun,Chen, Zhijian,Liu, Guodao. 2017

[9]Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu, Pan-Dao,Liu, Guo-Dao,Liu, Pan-Dao,Xue, Ying-Bin,Chen, Zhi-Jian,Tian, Jiang.

[10]Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Du, Yu-Mei,Bai, Chang-Jun,Liu, Guo-Dao,Tian, Jiang,Liao, Hong,Yan, Xiao-Long. 2009

[11]Grassland development in tropical and subtropical southern China. Michalk, D. L.,Yu, D. G.,Liu, G. D.,Bai, C. J.,Chen, Z. Q.. 2008

[12]Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Hong, Keqian,Gong, Deqiang,Zhang, Lubin,Hu, Huigang,Jia, Zhiwei,Gu, Hui,Song, Kanghua. 2016

[13]Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Weeds, PL,Chakraborty, S,Fernandes, CD,Charchar, MJD,Ramesh, CR,Kexian, Y,Kelemu, S. 2003

[14]Effects of Agave Plant Extracts on C. gloeosporioides and Characterization of Inhibitory Compounds. Chang Jin-mei,Zhang Lu-bin,Zhan Ru-lin. 2014

[15]Cloning of a carbendazim-resistant gene from Colletotrichum gloeosporioides of mango in South China. Ru-Lin, Zhan,Jun-Sheng, Huang. 2007

[16]The analysis of T-DNA insertional Colletotrichum gloeosporioides in Stylo pathogenicity-weakened mutant strain 1681. Xu, Peidong,Xu, Peidong,Zheng, Xiaolan,Tang, Wen,Li, Qiujie,Wu, Weihuai,Xi, Jingen,Liang, Yanqiong,Zheng, Jinlong,Li, Rui,Zhang, Chicheng,Yi, Kexian,He, Chunping,Tang, Wen,Li, Qiujie,Zhang, Chicheng,Yi, Kexian,Zhang, Xiaobo,Zhang, Xiaobo. 2015

[17]Antifungal Activity of Compounds Extracted from Cortex Pseudolaricis against Colletotrichum gloeosporioides. Zhang, Jing,Yuan, En-Lin,Ye, Huo-Chun,Zhang, Zheng-Ke,Yan, Chao,Feng, Gang,Zhang, Jing,Yuan, En-Lin,Ye, Huo-Chun,Zhang, Zheng-Ke,Yan, Chao,Feng, Gang,Yan, Li-Ting,Liu, Ying-Qian,Yuan, En-Lin,Ding, Hai-Xin.

[18]The Colletotrichum gloeosporioides perilipin homologue CAP 20 regulates functional appressorial formation and fungal virulence. Lin, Chunhua,Liu, Xianbao,Shi, Tao,Li, Chaoping,Huang, Guixiu,Lin, Chunhua. 2018

[19]The laccase gene (LAC1) is essential for Colletotrichum gloeosporioides development and virulence on mango leaves and fruits. Wei, Yunxie,Liu, Yanan,Zhou, Fangxue,Zhang, Kaili,Liu, Xiaomei,Wei, Yunxie,Liu, Yanan,Zhou, Fangxue,Zhang, Kaili,Liu, Xiaomei,Pu, Jinji,Zhang, He. 2017

[20]Construction of Progeny Population with Resistance to Mango Anthracnose and Their Identification by SSRs. Yao, Q. S.,Ma, X. W.,Lei, X. T.,Zhan, R. L.,Wang, S. B.,Wu, H. X..

作者其他论文 更多>>