您好,欢迎访问中国热带农业科学院 机构知识库!

Cloning and molecular characterization of a cDNA encoding a small GTPase from Hevea brasiliensis

文献类型: 外文期刊

作者: Li, H. L. 1 ; Guo, D. 1 ; Tian, W. M. 2 ; Peng, S. Q. 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Minist Agr, Inst Trop Biosci & Biotechnol, Key Lab Biol & Genet Resources Trop Crops, Haikou, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Rubber, Key Lab Biol & Genet Resource Rubber Tree, Minist Agr, Danzhou, Peoples R China

关键词: GTPase;Hevea brasiliensis;Latex;Jasmonate

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2013 年 12 卷 3 期

页码:

收录情况: SCI

摘要: Small GTPases play a critical role in the regulation of a range of cellular processes including growth, differentiation, and intracellular transportation. The cDNA encoding a small GTPase, designated as HbGTPase1, was isolated from Hevea brasiliensis. HbGTPase1 was 882 bp long containing a 612-bp open reading frame encoding a putative protein of 203 amino acids, flanked by an 83-bp 5'-untranslated region (UTR) and a 187-bp 3'-UTR. The predicted molecular mass of HbGTPase1 is 22.62 kDa, with an isoelectric point of 5.06. The HbGTPase1 protein was predicted to possess the conserved functional regions of the small GTPase superfamily of proteins. Quantitative polymerase chain reaction analysis revealed that HbGTPase1 was constitutively expressed in all tissues tested. HbGTPase1 transcripts accumulated at relatively low levels in the flower, latex, and leaves, while HbGTPase1 transcripts accumulated at relatively high levels in bark. Transcription of HbGTPase1 in the latex was induced by jasmonate.

  • 相关文献

[1]Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis. Yang, Zi-Ping,Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min.

[2]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[3]Molecular characterization and expression analysis of cDNAs encoding four Rab and two Arf GTPases in the latex of Hevea brasiliensis. Qin, Yunxia,Shi, Feng,Tang, Chaorong,Qin, Yunxia,Shi, Feng,Tang, Chaorong,Shi, Feng.

[4]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[5]Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones. Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Wang, Ying,Chen, Xiong-Ting,Peng, Shi-Qing. 2016

[6]Molecular characterization and expression analysis of two farnesyl pyrophosphate synthase genes involved in rubber biosynthesis in Hevea brasiliensis. Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong,Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong. 2017

[7]Histochemical and immunohistochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2011

[8]Cloning and molecular characterization of a copper chaperone gene (HbCCH1) from Hevea brasiliensis. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[9]Molecular cloning and expression analysis of the mevalonate diphosphate decarboxylase gene from the latex of Hevea brasiliensis. Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong,Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong.

[10]Isolation and expression analysis of four members of the plasma membrane H+-ATPase gene family in Hevea brasiliensis. Zhu, Jiahong,Chang, Wenjun,Xu, Jing,Zhang, Zhili.

[11]Molecular characterization of a thioredoxin h gene (HbTRX1) from Hevea brasiliensis showing differential expression in latex between self-rooting juvenile clones and donor clones. Li, Hui-Liang,Lu, Hui-Zhong,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min.

[12]A Silver-Staining cDNA-AFLP Protocol Suitable for Transcript Profiling in the Latex of Hevea brasiliensis (Para Rubber Tree). Xiao, Xiaohu,Li, Heping,Tang, Chaorong,Xiao, Xiaohu,Li, Heping.

[13]Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Zeng, Rizhong.

[14]Ethephon Increases Rubber Tree Latex Yield by Regulating Aquaporins and Alleviating the Tapping-Induced Local Increase in Latex Total Solid Content. An, Feng,Xie, Guishui,Zou, Zhi,An, Feng,Kong, Lingxue,Rookes, James,Cahill, David,Cai, Xiuqing.

[15]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[16]Cloning and characterization of HbJAZ1 from the laticifer cells in rubber tree (Hevea brasiliensis Muell. Arg.). Tian, W. -W.,Huang, W. -F.,Zhao, Y..

[17]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[18]Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Peng, Zheng,Kong, Ling Xue,Li, Si-Dong,Chen, Yin,Huang, Mao Fang. 2007

[19]Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Yu, Heping,Zeng, Zongqiang,Lu, Guang,Wang, Qifang.

[20]Effects of coagulation processes on properties of epoxidized natural rubber. Zeng Zong-Qiang,Yu He-Ping,Wang Qi-Fang,Guang, Lu.

作者其他论文 更多>>