文献类型: 外文期刊
作者: Wang, Jinghua 1 ; Li, Xiang 1 ; Yang, Guijun 2 ; Wang, Fan 1 ; Men, Sen 3 ; Xu, Bo 2 ; Xu, Ze 5 ; Yang, Haibin 5 ; Yan, Lei 1 ;
作者机构: 1.Beijing Forestry Univ, Sch Technol, 35 Tsinghua East Rd, Beijing 100083, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Beijing Union Univ, Coll Robot, Beijing 100020, Peoples R China
4.Beijing Union Univ, Beijing Engn Res Ctr Smart Mech Innovat Design Ser, Beijing 100020, Peoples R China
5.Tea Res Inst, Chongqing Acad Agr Sci, Chongqing 402160, Peoples R China
关键词: improved YOLOv5; Xception; ShuffleNetV2; receptive field block; tea bud recognition; germination density
期刊名称:FORESTS ( 影响因子:3.282; 五年影响因子:3.292 )
ISSN:
年卷期: 2022 年 13 卷 12 期
页码:
收录情况: SCI
摘要: Tea plants are one of the most widely planted agricultural crops in the world. The traditional method of surveying germination density is mainly manual checking, which is time-consuming and inefficient. In this research, the Improved YOLOv5 model was used to identify tea buds and detect germination density based on tea trees canopy visible images. Firstly, five original YOLOv5 models were trained for tea trees germination recognition, and performance and volume were compared. Secondly, backbone structure was redesigned based on the lightweight theory of Xception and ShuffleNetV2. Meanwhile, reverse attention mechanism (RA) and receptive field block (RFB) were added to enhance the network feature extraction ability, achieving the purpose of optimizing the YOLOv5 network from both lightweight and accuracy improvement. Finally, the recognition ability of the Improved YOLOv5 model was analyzed, and the germination density of tea trees was detected according to the tea bud count. The experimental results show that: (1) The parameter numbers of the five original YOLOv5 models were inversely proportional to the detection accuracy. The YOLOv5m model with the most balanced comprehensive performance contained 20,852,934 parameters, the precision rate of the YOLOv5m recognition model was 74.9%, the recall rate was 75.7%, and the mAP_0.5 was 0.758. (2) The Improved YOLOv5 model contained 4,326,815 parameters, the precision rate of the Improved YOLOv5 recognition model was 94.9%, the recall rate was 97.67%, and the mAP_0.5 was 0.758. (3) The YOLOv5m model and the Improved YOLOv5 model were used to test the validation set, and the true positive (TP) values identified were 86% and 94%, respectively. The Improved YOLOv5 network model was effectively improved in both volume and accuracy according to the result. This research is conducive to scientific planning of tea bud picking, improving the production efficiency of the tea plantation and the quality of tea production in the later stage.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



