文献类型: 外文期刊
作者: Wang, Jinghua 1 ; Li, Xiang 1 ; Yang, Guijun 2 ; Wang, Fan 1 ; Men, Sen 3 ; Xu, Bo 2 ; Xu, Ze 5 ; Yang, Haibin 5 ; Yan, Lei 1 ;
作者机构: 1.Beijing Forestry Univ, Sch Technol, 35 Tsinghua East Rd, Beijing 100083, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
3.Beijing Union Univ, Coll Robot, Beijing 100020, Peoples R China
4.Beijing Union Univ, Beijing Engn Res Ctr Smart Mech Innovat Design Ser, Beijing 100020, Peoples R China
5.Tea Res Inst, Chongqing Acad Agr Sci, Chongqing 402160, Peoples R China
关键词: improved YOLOv5; Xception; ShuffleNetV2; receptive field block; tea bud recognition; germination density
期刊名称:FORESTS ( 影响因子:3.282; 五年影响因子:3.292 )
ISSN:
年卷期: 2022 年 13 卷 12 期
页码:
收录情况: SCI
摘要: Tea plants are one of the most widely planted agricultural crops in the world. The traditional method of surveying germination density is mainly manual checking, which is time-consuming and inefficient. In this research, the Improved YOLOv5 model was used to identify tea buds and detect germination density based on tea trees canopy visible images. Firstly, five original YOLOv5 models were trained for tea trees germination recognition, and performance and volume were compared. Secondly, backbone structure was redesigned based on the lightweight theory of Xception and ShuffleNetV2. Meanwhile, reverse attention mechanism (RA) and receptive field block (RFB) were added to enhance the network feature extraction ability, achieving the purpose of optimizing the YOLOv5 network from both lightweight and accuracy improvement. Finally, the recognition ability of the Improved YOLOv5 model was analyzed, and the germination density of tea trees was detected according to the tea bud count. The experimental results show that: (1) The parameter numbers of the five original YOLOv5 models were inversely proportional to the detection accuracy. The YOLOv5m model with the most balanced comprehensive performance contained 20,852,934 parameters, the precision rate of the YOLOv5m recognition model was 74.9%, the recall rate was 75.7%, and the mAP_0.5 was 0.758. (2) The Improved YOLOv5 model contained 4,326,815 parameters, the precision rate of the Improved YOLOv5 recognition model was 94.9%, the recall rate was 97.67%, and the mAP_0.5 was 0.758. (3) The YOLOv5m model and the Improved YOLOv5 model were used to test the validation set, and the true positive (TP) values identified were 86% and 94%, respectively. The Improved YOLOv5 network model was effectively improved in both volume and accuracy according to the result. This research is conducive to scientific planning of tea bud picking, improving the production efficiency of the tea plantation and the quality of tea production in the later stage.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown



