Shifts in the bacterial community structure and function along a vegetation gradient in the Great Xing'an Mountains
文献类型: 外文期刊
作者: Li, Xin 1 ; Pang, Haosheng 1 ; Zhao, Yusen 3 ; Sun, Minglong 4 ; Zhang, Xiuli 1 ; Xu, Nan 5 ; He, Guoqiang 6 ; Zhang, Hui 1 ;
作者机构: 1.Northeast Forestry Univ, Coll Life Sci, Harbin, Heilongjiang, Peoples R China
2.Northeast Agr Univ, Coll Resources & Environm, Harbin, Heilongjiang, Peoples R China
3.Northeast Forestry Univ, Sch Forestry, Harbin, Heilongjiang, Peoples R China
4.Heilongjiang Acad Agr Sci, Inst Crop Breeding, Harbin, Heilongjiang, Peoples R China
5.Heilongjiang Acad Agr Sci, Nat Resources & Ecol Inst, Harbin, Heilongjiang, Peoples R China
6.Tobacco Res Inst Mudanjiang, Mudanjiang, Peoples R China
关键词: Soil bacteria;Biolog EcoPlate (TM);MiSeq sequencing;vegetation type
期刊名称:SCANDINAVIAN JOURNAL OF FOREST RESEARCH ( 影响因子:2.103; 五年影响因子:2.003 )
ISSN: 0282-7581
年卷期: 2018 年 33 卷 2 期
页码:
收录情况: SCI
摘要: The aim of this study was to compare soil bacterial communities in the Great Xing'an Mountains that represent three dominant vegetation types (Quercus mongolica forest, shrub mixed with herb and grassland). Soil bacterial communities were analyzed by both culture-dependent physiological profiling (Biolog) and culture-independent DNA-based approaches. The Q. mongolica forest and shrub mixed with herb had higher average well color development than the grassland, and the Q. mongolica forest and shrub mixed with herb soil bacterial communities easily utilized miscellaneous and amines/amides. The bacterial community structure was distinct across the three sites. Most of Acidobacteria, Proteobacteria and Bacteroidetes were found in grassland soil, while Firmicutes was present at a higher percentage in the Q. mongolica soil. Extracellular enzyme assays indicated that the soil ecosystem in the grassland experienced altered N and P nutrient cycling dynamics. pH, available phosphorus, potassium and nitrogen were important in shaping bacterial community structure. These results suggest that vegetation type was a strong determinant of the structure and function of bacterial communities, which may subsequently lead to significant changes in ecosystem functioning.
- 相关文献
作者其他论文 更多>>
-
Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)
作者:Li, Sinan;Hou, Shuai;Sun, Yuanqing;Sun, Minghao;Sun, Yan;Li, Xin;Li, Yunlong;Wang, Luyao;Cai, Quan;Guo, Baitao;Zhang, Jianguo
关键词:maize; LOX; abiotic stress; gene family; expression analysis
-
Comparative Metabolomics Analysis of Seed Composition Accumulation in Soybean (Glycine max L.) Differing in Protein and Oil Content
作者:Cui, Yifan;Wang, Zhiyang;Li, Mingyang;Wang, Sihui;Liu, Chunyan;Xin, Dawei;Qi, Zhaoming;Chen, Qingshan;Yang, Mingliang;Zhao, Ying;Li, Xin
关键词:metabolomics; seed oil; seed protein; soybean (Glycine max (Linn.) Merr.)
-
Combined effects of cropping alfalfa (Medicago sativa L.) on the soil pore structure, microbial communities and organic carbon fractions in saline soils
作者:Zhu, Dan;Sun, Lei;Mao, Lina;Yan, Bohan;Li, Bin;Li, Xin;Li, Jingyang;Li, Bin;Li, Xin
关键词:Phytoremediation; Computed tomography scanning; Organic carbon fractions; Microorganisms; Co-occurrence network
-
Alfalfa MsGAD2 induces γ-aminobutyric acid accumulation and enhances Cd resistance in transgenic tobacco
作者:Qin, Bo;Sun, Minglong;Li, Tie;Li, Dongmei;Qin, Bo;Liu, Hongzhen;Wang, Kexin;Zhang, Hongrui;Zhang, Huihui
关键词:Alfalfa; Cd stress; GABA; GAD gene; WGCNA
-
Integrating Genetic Diversity and Agronomic Innovations for Climate-Resilient Maize Systems
作者:Li, Xin;Li, Yunlong;Sun, Yan;Li, Sinan;Cai, Quan;Li, Shujun;Sun, Minghao;Yu, Tao;Meng, Xianglong;Zhang, Jianguo
关键词:maize; climate resilience; climatic change; genomic selection; multiomics; speed breeding; gene editing
-
Functional Analysis of Zinc Finger Protein Transcription Factor ZmZFP69 Under Low-Temperature Stress at Maize Seedling Stage
作者:Li, Si-Nan;Sun, Yan;Li, Yun-Long;Sun, Ming-Hao;Li, Shu-Jun;Yin, Yue;Yu, Tao;Li, Xin;Cai, Quan;Zhang, Jian-Guo
关键词:zinc finger protein;
ZmZFP69 ; maize; low-temperature stress -
Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response
作者:Liu, Peiyan;Cui, Yifan;Wu, Xiaoxia;Zhao, Ying;Hu, Zhenbang;Liu, Chunyan;Zhang, Zhanguo;Yang, Mingliang;Chen, Qingshan;Li, Xin
关键词:soybean ( Glycine max (Linn.) Merr.); malate dehydrogenase; expression profile; salt stress



