您好,欢迎访问黑龙江省农业科学院 机构知识库!

Mycotoxin Contamination of Maize in China

文献类型: 外文期刊

作者: Sun, Xiang Dong 1 ; Su, Ping 1 ; Shan, Hong 1 ;

作者机构: 1.Heilongjiang Acad Agr Sci, Qual & Safety Inst Agr Prod, Harbin 150086, Heilongjiang, Peoples R China

2.Minist Agr, Lab Qual & Safety Risk Assessment Agroprod Harbin, Harbin 150086, Heilongjiang, Peoples R China

关键词: contamination;fungi;maize;mycotoxins

期刊名称:COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY ( 影响因子:12.811; 五年影响因子:15.365 )

ISSN: 1541-4337

年卷期: 2017 年 16 卷 5 期

页码:

收录情况: SCI

摘要: China is a major cereal-producing country and almost one third of the annual cereal yield is maize. The maize plant and kernel are prone to infection by fungal attack and are most likely to be contaminated with mycotoxins under suitable temperature and humidity conditions, during both the growing and storage period. A number of investigations conducted in China have demonstrated that maize had been infected by fungi and contaminated with mycotoxins to varying degrees. Although most of the maize produced in China is used as feed and raw materials for the chemistry industry, a small amount of maize is consumed directly by humans and the hazards of mycotoxin to humans cannot be ignored. The state of mycotoxin contamination of maize in China is analyzed in this review. Due to unfavorable weather and poor storage conditions, the high incidences of mycotoxin contamination of maize are of great concern to the Chinese. It is imperative for the national and local governments to increase investments on building large-scale modern warehouses and instructing farmers to grow, harvest, and store maize safely. Meanwhile, due to accumulative toxic effects of mycotoxins, quality control should be enforced to guarantee that animal products are safe for human consumption.

  • 相关文献

[1]Mycotoxin Contamination of Rice in China. Sun, Xiang Dong,Su, Ping,Shan, Hong,Sun, Xiang Dong,Su, Ping,Shan, Hong.

[2]Analysis of Fungal Diversity in the Composting by Sequencing of Cloned PCR-Amplified 18S rDNA and Denaturing Gradient Gel Electrophoresis. Li, Wan,Xiao, Jialei,Lai, Yongcai,Xu, Xiuhong,Li, Hongtao,Zhang, Bixian. 2012

[3]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[4]New insight into the mechanism of heterofertilization during maize haploid induction. Liu, Chenxu,Chen, Baojian,Xu, Xiaowei,Li, Wei,Dong, Xin,Tian, Xiaolong,Chen, Chen,Zhong, Yu,Chen, Ming,Chen, Shaojiang,Ma, Yanhua,Dong, Xin.

[5]A comparison of different methods of decomposing maize straw in China. Kuang, Enjun,Chi, Fengqin,Su, Qingrui,Zhang, Jiuming,Jeng, Alhaji S..

[6]Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. Ning, De-Li,Ning, De-Li,Wang, Yue-Feng,Wang, Bai-Chen,Liu, Ke-Hui,Wang, Ying-Chun,Liu, Chang-Cai,Liu, Jin-Wen,Qian, Chun-Rong,Yu, Yang.

[7]Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Liu, Hongjun,Qin, Cheng,Zhang, Yongzhong,Liu, Sisi,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Pan, Guangtang,Yang, Xuerong,Liao, Xinhui,Zhou, Huangkai,Zuo, Tao,Qin, Cheng,Cao, Shiliang,Dong, Ling,Luebberstedt, Thomas.

[8]Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang, Ao,Liu, Yubo,Cui, Zhenhai,Ruan, Yanye,Yu, Haiqiu,Zhang, Ao,Wang, Hongwu,Liu, Yubo,Burgueno, Juan,San Vicente, Felix,Crossa, Jose,Zhang, Xuecai,Wang, Hongwu,Beyene, Yoseph,Semagn, Kassa,Olsen, Michael,Prasanna, Boddupalli M.,Cao, Shiliang,Semagn, Kassa. 2017

[9]Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Li, Zhao,Hu, Guanghui,Liu, Xiangfeng,Zhou, Yao,Zhang, Qian,Yang, Deguang,Zhang, Zhiwu,Li, Zhao,Hu, Guanghui,Zhang, Xu,Yuan, Xiaohui,Zhang, Zhiwu,Hu, Guanghui,Wang, Tianyu,Yuan, Xiaohui. 2016

[10]Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. Liu, Hongjun,Zhang, Lin,Zeng, Xing,Wang, Jiechen,Li, Changsheng,Xie, Shupeng,Zhang, Yongzhong,Liu, Sisi,Hu, Songlin,Lee, Michael,Lubberstedt, Thomas,Wang, Jianhua,Zhao, Guangwu. 2017

[11]Correlation Analysis of Yield and Photosynthetic Traits with Simple Repeat Sequence (SSR) Markers in Maize. Li, Weizhong,Zhao, Dongxu,Wei, Shi,Li, Jing,Li, Weizhong,Wang, Maoqing,Hu, Guohua,Liang, Chunbo. 2017

[12]Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Chao, Qing,Mei, Ying-Chang,Gao, Zhi-Fang,Chen, Yi-Bo,Wang, Bai-Chen,Liu, Xiao-Yu,Qian, Chun-Rong,Hao, Yu-Bo. 2014

[13]Structure of Allozymatic Diversity of Ten Temperate and Adapted Exotic Breeding Populations of Maize (Zea mays L.). Zheng Da-hao,Li Yan-ru,Yu Yang,Wang Zhen-ping. 2009

[14]Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. Liu, Hongjun,Ma, Langlang,Gao, Shibin,Lin, Haijian,Pan, Guangtang,Shen, Yaou,Liu, Hongjun,Yang, Xuerong,Zhang, Lin,Zeng, Xing,Xie, Shupeng,Peng, Huanwei,Wu, Yongrui. 2017

[15]Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. Gu, Yingnan,He, Lin,Zhao, Changjiang,Wang, Feng,Yan, Bowei,Gao, Yuqiao,Li, Zuotong,Yang, Kejun,Xu, Jingyu,Gu, Yingnan. 2017

[16]Large-scale analysis of phosphorylated proteins in maize leaf. Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Wang, Hong-Xia,Li, Xiao-hui.

作者其他论文 更多>>