您好,欢迎访问黑龙江省农业科学院 机构知识库!

Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses

文献类型: 外文期刊

作者: Yu, Ying 1 ; Wu, Guangwen 2 ; Yuan, Hongmei 1 ; Cheng, Lili 2 ; Zhao, Dongsheng 2 ; Huang, Wengong 2 ; Zhang, Shuquan; 1 ;

作者机构: 1.Heilongjiang Acad Agr Sci, Postdoctoral Programme, Harbin 150086, Peoples R China

2.Heilongjiang Acad Agr Sci, Inst Ind Crops, Harbin 150086, Peoples R China

3.Harbin Ctr Dis Control & Prevent, Div Insect Borne Parastit Dis Control & Prevent, Harbin 150056, Pe

关键词: MicroRNAs;Saline-alkaline stress;Deep sequencing;Degradome;Flax

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2016 年 16 卷

页码:

收录情况: SCI

摘要: Background: MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. Results: In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Conclusions: Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.

  • 相关文献

[1]Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Yu, Ying,Yuan, Hongmei,Guan, Fengzhi,Yu, Ying,Huang, Wengong,Wu, Guangwen,Yuan, Hongmei,Song, Xixia,Kang, Qinghua,Zhao, Dongsheng,Jiang, Weidong,Liu, Yan,Wu, Jianzhong,Cheng, Lili,Yao, Yubo,Guan, Fengzhi,Chen, Hongyu.

[2]Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing. Wu, Jianzhong,Jiang, Tingbo,Wu, Jianzhong,Zhao, Qian,Wu, Guangwen,Zhang, Shuquan. 2017

[3]Gene expression profile analysis of pig muscle in response to cold stress. Zhang Dong-jie,Liu Di,Wang Liang,Wang Wen-tao,He Xin-miao,Yang Guo-wei. 2017

作者其他论文 更多>>