您好,欢迎访问黑龙江省农业科学院 机构知识库!

Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity

文献类型: 外文期刊

作者: Chao, Qing 1 ; Liu, Xiao-Yu 2 ; Mei, Ying-Chang 1 ; Gao, Zhi-Fang 1 ; Chen, Yi-Bo 1 ; Qian, Chun-Rong 3 ; Hao, Yu-Bo 3 ;

作者机构: 1.Chinese Acad Sci, Inst Bot, Photosynth Res Ctr, Key Lab Photobiol, Beijing 100093, Peoples R China

2.Northeast Forestry Univ, State Key Lab Forest Genet & Tree Breeding, Harbin 150040, Peoples R China

3.Heilongjiang Acad Agr Sci, Inst Crop Cultivat & Farming, Harbin 150086, Peoples R China

关键词: Enzyme activity;Leaf sections;Light regulation;Maize;Phosphoenolpyruvate carboxykinase;Phosphorylation sites

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN: 0167-4412

年卷期: 2014 年 85 卷 1-2 期

页码:

收录情况: SCI

摘要: Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C-4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C-4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.

  • 相关文献

[1]Correlation Analysis of Yield and Photosynthetic Traits with Simple Repeat Sequence (SSR) Markers in Maize. Li, Weizhong,Zhao, Dongxu,Wei, Shi,Li, Jing,Li, Weizhong,Wang, Maoqing,Hu, Guohua,Liang, Chunbo. 2017

[2]Structure of Allozymatic Diversity of Ten Temperate and Adapted Exotic Breeding Populations of Maize (Zea mays L.). Zheng Da-hao,Li Yan-ru,Yu Yang,Wang Zhen-ping. 2009

[3]Mycotoxin Contamination of Maize in China. Sun, Xiang Dong,Su, Ping,Shan, Hong,Sun, Xiang Dong,Su, Ping,Shan, Hong. 2017

[4]Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang, Ao,Liu, Yubo,Cui, Zhenhai,Ruan, Yanye,Yu, Haiqiu,Zhang, Ao,Wang, Hongwu,Liu, Yubo,Burgueno, Juan,San Vicente, Felix,Crossa, Jose,Zhang, Xuecai,Wang, Hongwu,Beyene, Yoseph,Semagn, Kassa,Olsen, Michael,Prasanna, Boddupalli M.,Cao, Shiliang,Semagn, Kassa. 2017

[5]Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. Liu, Hongjun,Zhang, Lin,Zeng, Xing,Wang, Jiechen,Li, Changsheng,Xie, Shupeng,Zhang, Yongzhong,Liu, Sisi,Hu, Songlin,Lee, Michael,Lubberstedt, Thomas,Wang, Jianhua,Zhao, Guangwu. 2017

[6]Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Li, Zhao,Hu, Guanghui,Liu, Xiangfeng,Zhou, Yao,Zhang, Qian,Yang, Deguang,Zhang, Zhiwu,Li, Zhao,Hu, Guanghui,Zhang, Xu,Yuan, Xiaohui,Zhang, Zhiwu,Hu, Guanghui,Wang, Tianyu,Yuan, Xiaohui. 2016

[7]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[8]Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. Liu, Hongjun,Ma, Langlang,Gao, Shibin,Lin, Haijian,Pan, Guangtang,Shen, Yaou,Liu, Hongjun,Yang, Xuerong,Zhang, Lin,Zeng, Xing,Xie, Shupeng,Peng, Huanwei,Wu, Yongrui. 2017

[9]Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. Gu, Yingnan,He, Lin,Zhao, Changjiang,Wang, Feng,Yan, Bowei,Gao, Yuqiao,Li, Zuotong,Yang, Kejun,Xu, Jingyu,Gu, Yingnan. 2017

[10]Large-scale analysis of phosphorylated proteins in maize leaf. Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Wang, Hong-Xia,Li, Xiao-hui.

[11]Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. Ning, De-Li,Ning, De-Li,Wang, Yue-Feng,Wang, Bai-Chen,Liu, Ke-Hui,Wang, Ying-Chun,Liu, Chang-Cai,Liu, Jin-Wen,Qian, Chun-Rong,Yu, Yang.

[12]Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Liu, Hongjun,Qin, Cheng,Zhang, Yongzhong,Liu, Sisi,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Pan, Guangtang,Yang, Xuerong,Liao, Xinhui,Zhou, Huangkai,Zuo, Tao,Qin, Cheng,Cao, Shiliang,Dong, Ling,Luebberstedt, Thomas.

[13]A comparison of different methods of decomposing maize straw in China. Kuang, Enjun,Chi, Fengqin,Su, Qingrui,Zhang, Jiuming,Jeng, Alhaji S..

[14]New insight into the mechanism of heterofertilization during maize haploid induction. Liu, Chenxu,Chen, Baojian,Xu, Xiaowei,Li, Wei,Dong, Xin,Tian, Xiaolong,Chen, Chen,Zhong, Yu,Chen, Ming,Chen, Shaojiang,Ma, Yanhua,Dong, Xin.

作者其他论文 更多>>