您好,欢迎访问黑龙江省农业科学院 机构知识库!

Large-scale analysis of phosphorylated proteins in maize leaf

文献类型: 外文期刊

作者: Bi, Ying-Dong 1 ; Wang, Hong-Xia 4 ; Lu, Tian-Cong 1 ; Li, Xiao-hui; Shen, Zhuo 1 ; Chen, Yi-Bo 1 ; Wang, Bai-Chen 1 ;

作者机构: 1.NE Forestry Univ, Key Lab Forest Tree Genet Improvement & Biotechno, Minist Educ, Harbin 150040, Peoples R China

2.NE Forestry Univ, Sch Forestry, Harbin 150040, Peoples R China

3.Heilongjiang Acad Agr Sci, Res Inst Crop Cultivat, Harbin 150086, Peoples R China

4.Natl Ctr Biomed Anal, Beijing 100850, Peoples R Chi

关键词: Maize;NanoLC-MS/MS;Phosphorylation

期刊名称:PLANTA ( 影响因子:4.116; 五年影响因子:4.316 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation.

  • 相关文献

[1]Correlation Analysis of Yield and Photosynthetic Traits with Simple Repeat Sequence (SSR) Markers in Maize. Li, Weizhong,Zhao, Dongxu,Wei, Shi,Li, Jing,Li, Weizhong,Wang, Maoqing,Hu, Guohua,Liang, Chunbo. 2017

[2]Structure of Allozymatic Diversity of Ten Temperate and Adapted Exotic Breeding Populations of Maize (Zea mays L.). Zheng Da-hao,Li Yan-ru,Yu Yang,Wang Zhen-ping. 2009

[3]Mycotoxin Contamination of Maize in China. Sun, Xiang Dong,Su, Ping,Shan, Hong,Sun, Xiang Dong,Su, Ping,Shan, Hong. 2017

[4]Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Zhang, Ao,Liu, Yubo,Cui, Zhenhai,Ruan, Yanye,Yu, Haiqiu,Zhang, Ao,Wang, Hongwu,Liu, Yubo,Burgueno, Juan,San Vicente, Felix,Crossa, Jose,Zhang, Xuecai,Wang, Hongwu,Beyene, Yoseph,Semagn, Kassa,Olsen, Michael,Prasanna, Boddupalli M.,Cao, Shiliang,Semagn, Kassa. 2017

[5]Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. Liu, Hongjun,Zhang, Lin,Zeng, Xing,Wang, Jiechen,Li, Changsheng,Xie, Shupeng,Zhang, Yongzhong,Liu, Sisi,Hu, Songlin,Lee, Michael,Lubberstedt, Thomas,Wang, Jianhua,Zhao, Guangwu. 2017

[6]Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Li, Zhao,Hu, Guanghui,Liu, Xiangfeng,Zhou, Yao,Zhang, Qian,Yang, Deguang,Zhang, Zhiwu,Li, Zhao,Hu, Guanghui,Zhang, Xu,Yuan, Xiaohui,Zhang, Zhiwu,Hu, Guanghui,Wang, Tianyu,Yuan, Xiaohui. 2016

[7]Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Chao, Qing,Mei, Ying-Chang,Gao, Zhi-Fang,Chen, Yi-Bo,Wang, Bai-Chen,Liu, Xiao-Yu,Qian, Chun-Rong,Hao, Yu-Bo. 2014

[8]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[9]Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. Liu, Hongjun,Ma, Langlang,Gao, Shibin,Lin, Haijian,Pan, Guangtang,Shen, Yaou,Liu, Hongjun,Yang, Xuerong,Zhang, Lin,Zeng, Xing,Xie, Shupeng,Peng, Huanwei,Wu, Yongrui. 2017

[10]Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. Gu, Yingnan,He, Lin,Zhao, Changjiang,Wang, Feng,Yan, Bowei,Gao, Yuqiao,Li, Zuotong,Yang, Kejun,Xu, Jingyu,Gu, Yingnan. 2017

[11]Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. Ning, De-Li,Ning, De-Li,Wang, Yue-Feng,Wang, Bai-Chen,Liu, Ke-Hui,Wang, Ying-Chun,Liu, Chang-Cai,Liu, Jin-Wen,Qian, Chun-Rong,Yu, Yang.

[12]Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development. Liu, Hongjun,Qin, Cheng,Zhang, Yongzhong,Liu, Sisi,Shen, Yaou,Lin, Haijian,Zhang, Zhiming,Pan, Guangtang,Yang, Xuerong,Liao, Xinhui,Zhou, Huangkai,Zuo, Tao,Qin, Cheng,Cao, Shiliang,Dong, Ling,Luebberstedt, Thomas.

[13]A comparison of different methods of decomposing maize straw in China. Kuang, Enjun,Chi, Fengqin,Su, Qingrui,Zhang, Jiuming,Jeng, Alhaji S..

[14]New insight into the mechanism of heterofertilization during maize haploid induction. Liu, Chenxu,Chen, Baojian,Xu, Xiaowei,Li, Wei,Dong, Xin,Tian, Xiaolong,Chen, Chen,Zhong, Yu,Chen, Ming,Chen, Shaojiang,Ma, Yanhua,Dong, Xin.

作者其他论文 更多>>