您好,欢迎访问黑龙江省农业科学院 机构知识库!

QTL analysis of soybean oil content under 17 environments

文献类型: 外文期刊

作者: Qi, Zhaoming 1 ; Han, Xue 2 ; Hou, Meng 1 ; Xin, Dawei 1 ; Wang, Zhongyu 1 ; Zhu, Rongsheng 1 ; Hu, Zhenbang 1 ; Jiang, H 1 ;

作者机构: 1.Northeast Agr Univ, Coll Agr, Harbin 150030, Heilongjiang, Peoples R China

2.Crop Res & Breeding Ctr Land Reclamat Heilongjian, Harbin 150090, Heilongjiang, Peoples R China

3.HeiLongJiang Acad Agr Sci, JiaMuSi Branch Inst, Jiamusi 154007, Heilongjiang, Peoples R China

关键词: Soybean;quantitative trait loci mapping;QTLnetwork;marker-assisted selection

期刊名称:CANADIAN JOURNAL OF PLANT SCIENCE ( 2020影响因子:1.018; 五年影响因子:1.242 )

ISSN: 0008-4220

年卷期: 2014 年 94 卷 2 期

页码:

收录情况: SCI

摘要: Soybean oil content is a key trait driver of successful soybean quality. Due to its complex nature, less stable quantitative trait loci (QTL) are known. The goal of this study was to identify important and stable QTL affecting soybean oil content using recombination inbred lines (RILs) derived from a cross between Charleston and Dongnong594. The plant materials were planted in three environments across 9 yr in China. The genetic effects were then partitioned into additive main effects (A), epistatic main effects (AA) and their environment interaction effects (AE and AAE) by using composite interval mapping, multiple interval mapping and composite interval mapping in a mixed linear model. Fifty-six QTL were identified on 15 of 20 soybean chromosomes excluding LG C1, D2, E, M and O by composite interval mapping and multiple interval mapping methods. Seven oil content QTL detected on LG A1, 1 on LG A2, 5 on LG B1, 4 on LG B2, 8 on LG C2, 11 on LG D1a, 2 on LG D1b, 4 on LG F, 5 on LG G, 2 on LG H, 1 on LG I, 1 on LG J, 1 on LG K, 2 on LG L and 2 on LG N. Eight QTL showed a good stability across 17 environments. The additive main-effect QTL contributed more phenotypic variation than the epistasis and environmental interaction. This indicated that it is feasible to improve soybean oil content by marker-assisted selection.

  • 相关文献

[1]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang. 2005

[2]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang,中国科学院文献情报中心; 中国生物技术发展中心; 中国生物工程学会;. 2005

[3]Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing. Wu, Jianzhong,Jiang, Tingbo,Wu, Jianzhong,Zhao, Qian,Wu, Guangwen,Zhang, Shuquan. 2017

[4]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[5]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[6]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[7]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[8]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[9]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[10]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[11]Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions. Xue, Allen G.,Cober, Elroy R.,Babcock, Carolyn,Zhang, Jinxiu,Wei, Lai,Zhang, Shuzhen,Li, Wenbin,Wu, Junjiang,Liu, Lijun. 2010

[12]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[13]Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Gu, Yongzhe,Wang, Yan,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Li, Wei,Liu, Miao,Lai, Yongcai,Jiang, Hongwei,Chen, Qingshan.

[14]Detecting SNPs underlying domestication-related traits in soybean. Li, Ying-Hui,Ma, Yan-Song,Chang, Ru-Zhen,Qiu, Li-Juan,Reif, Jochen C.,Jackson, Scott A.,Ma, Yan-Song. 2014

[15]Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. Zhong, Chao,Sun, Suli,Duan, Canxing,Zhu, Zhendong,Yao, Liangliang,Ding, Junjie. 2018

[16]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[17]Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Wu, X. X.,Li, J.,Wu, X. D.,Wang, Z. K.,Liu, S. S.,Li, S. N.,Ma, Y. L.,Zhao, L.,Li, H. Y.,Li, D. M.,Li, W. B.,Liu, Q.,Su, A. Y.,Sun, J.. 2016

[18]GmACP expression is decreased in GmNORK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei. 2016

[19]Construction and analysis of a suppression subtractive hybridization library of regeneration-related genes in soybean. Sun, J.,Li, J.,Liu, M.,Zhang, B. B.,Li, D. M.,Wang, M.,Zhang, C.,Li, W. B.,Wu, X. X.,Sun, J.,Su, A. Y.. 2015

[20]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

作者其他论文 更多>>