Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera

文献类型: 外文期刊

第一作者: Hong, B

作者: Hong, B;Zhang, ZF;Tang, SM;Yi, YZ;Zhang, TY;Xu, WH

作者机构:

关键词: diapause hormone;pheromone biosynthesis activating neuropeptide;transcriptional regulation;E-box;transcription factor;Helicoverpa armigera;LOOP-HELIX PROTEINS;BOMBYX-MORI;SUBESOPHAGEAL GANGLION;TRANSCRIPTION FACTOR;PRECURSOR PROTEIN;MOLECULAR CHARACTERIZATION;FXPRLAMIDE NEUROPEPTIDES;DEVELOPMENTAL EXPRESSION;NEUROSECRETORY-CELLS;PROXIMAL PROMOTER

期刊名称:BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION ( 影响因子:1.704; 五年影响因子:2.098 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN) are two crucial neuropeptides which regulate insect development and sex pheromone biosynthesis respectively. These peptides are encoded by a single gene, termed DH-PBAN gene. In this study, we characterized the promoter of the DH-PBAN gene in Helicoverpa armigera (Har). Transient transfection assays using a series of stepwise deletion fragments linked to the luciferase reporter gene indicate that the promoter contains multiple regulator domains that can activate and repress reporter gene expression. The fragment spanning -467 to -371 bp of the DH-PBAN promoter is an activator domain of transcription, whereas the region from -965 to -534 bp represses the promoter activity in the insect cell line BmN. Electrophoretic mobility shift assays demonstrate that at least two nuclear protein factors from the nuclear protein extracts of H. armigera suboesophageal ganglion, Har-DHMBP-1 and -2 (DH-modulator-binding protein) can specifically bind to the activating region. Furthermore, we characterized in detail that the nuclear protein factor Har-DHMBP-3 can specifically bind to a classical E-box, CAGCTG localized at positions -360 to -355 bp, a potential site for interaction with basic helix-loop-helix transcription factors. Mutation of this E-box results in a significant reduction of the promoter activity, suggesting it can modulate the previously identified activator domain. Taken together, multipartite cis-elements and transcription factors in the DH-PBAN promoter are involved in regulation of the gene expression. (c) 2006 Elsevier B.V. All rights reserved.

分类号: Q5

  • 相关文献

[1]Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Zhang, TY,Kang, L,Zhang, ZF,Xu, WH.

[2]Molecular cloning, developmental expression, and tissue distribution of the gene encoding DH, PBAN and other FXPRL neuropeptides in Samia cynthia ricini. Wei, ZJ,Zhang, TY,Sun, JS,Xu, AY,Xu, WH,Denlinger, DL. 2004

[3]Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Li, Chonghui,Ding, Ling,Huang, Mingzhong,Huang, Surong,Yang, Guangsui,Yin, Junmei,Qiu, Flan,Ding, Ling,Li, Chonghui,Huang, Mingzhong,Huang, Surong,Yang, Guangsui,Yin, Junmei.

[4]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[5]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[6]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[7]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[8]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

[9]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[10]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[11]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[12]Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L.. Fu, Xiao-Yan,Zhang, Zhen,Peng, Ri-He,Xiong, Ai-Sheng,Liu, Jin-Ge,Wu, Li-Juan,Gao, Feng,Zhu, Hong,Guo, Zhao-Kui,Yao, Quan-Hong. 2007

[13]Isolation, characterization and expression analysis of BrMyb from Erwinia carotovora subsp Carotovora diseased Chinese cabbage. Zhang, Song-He,Yang, Qing,Ma, Rong-Cai. 2007

[14]High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors. Song Yang,Liu Hong-di,Zhang Hong-jun,Wang Hai-bo,Liu Feng-zhi,Zhou Qiang,Zhang Zhi-dong,Li Ya-dong. 2017

[15]Gene cloning and function analysis of ABP9 protein which specifically binds to ABRE2 motif of maize Cat1 gene. Wang, L,Zhao, J,Fan, YL. 2002

[16]The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sun, Dandan,Cao, Huijuan,Shi, Yongkai,Huang, Pengyun,Lu, Jianping,Cao, Huijuan,Liu, Xiaohong,Lin, Fucheng,Dong, Bo. 2017

[17]Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Cheng, Guo,Li, Qiang,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Zhu, Yan-Rong,Song, Wen-Feng,Zhang, Xue,Cui, Xiao-Di,Wang, Jun,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Wang, Jun,He, Yan-Nan,Chen, Wu,Sun, Run-Ze,Sun, Run-Ze,Cheng, Guo,Li, Qiang. 2017

[18]OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Liu, XQ,Bai, XQ,Qian, Q,Wang, XH,Chen, MS,Chu, CC. 2005

[19]Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Hong, Meiyan,Hu, Kaining,Tian, Tiantian,Li, Xia,Chen, Li,Zhang, Yan,Yi, Bin,Wen, Jing,Ma, Chaozhi,Shen, Jinxiong,Fu, Tingdong,Tu, Jinxing,Li, Xia,Chen, Li,Zhang, Yan. 2017

[20]Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions. Yang, Shihai,Liu, Jiaqi,Wang, Rui,Cai, Junjun. 2017

作者其他论文 更多>>