Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus

文献类型: 外文期刊

第一作者: Bai, Xuejing

作者: Bai, Xuejing;Teng, Da;Tian, Zigang;Zhu, Yanping;Yang, Yalin;Wang, Jianhua;Bai, Xuejing;Teng, Da;Tian, Zigang;Zhu, Yanping;Yang, Yalin;Wang, Jianhua

作者机构:

关键词: Antimicrobial activity;Bovine lactoferrin;Inter-lobe region;Iron binding;Recombinant expression

期刊名称:BIOMETALS ( 影响因子:2.949; 五年影响因子:2.978 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The investigation of the recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against Staphylococcus aureus. rBLfA containing N-lobe (amino acid residues 1-333) and inter-lobe region (residues 334-344) was expressed in Pichia pastoris at shaking flask and fermentor level. The recombinant intact bovine lactoferrin (rBLf) and N-lobe (rBLfN) were expressed in the same system as control. The physical-chemical parameters of rBLfA, rBLfN and rBLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than rBLf and rBLfN. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0-3.5, whereas rBLfN lost its iron over the pH range of 7.0-4.0 and iron release from rBLf occurred in the pH range of 5.5-3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5 μmol/L, compared with 12.5 and 25 μmol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.

分类号: Q

  • 相关文献

[1]Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Wang, X. J.,Wang, X. M.,Teng, D.,Zhang, Y.,Mao, R. Y.,Wang, J. H.,Wang, X. J.,Wang, X. M.,Teng, D.,Zhang, Y.,Mao, R. Y.,Wang, J. H..

[2]Eukaryotic expression and antimicrobial spectrum determination of the peptide tachyplesin II. Xu, Feng,Meng, Kun,Wang, Ya-Ru,Lu, Hui-Ying,Yang, Pei-Long,Yao, Bin,Xu, Feng,Wu, Ning-Feng,Fan, Yun-Liu.

[3]The recombinant serine protease XAoz1 of Arthrobotrys oligospora exhibits potent nematicidal activity against Caenorhabditis elegans and Haemonchus contortus. Wang Junwei,Meng Qingling,Qiao Jun,Wang Weisheng,Chen Shuangqing,Zhao Chunguang,Chen Chuangfu,Luo Jianxun.

[4]Modification and characterization of a new recombinant marine antimicrobial peptide N2. Yang, Na,Feng, Xingjun,Wang, Xiumin,Teng, Da,Mao, Ruoyu,Hao, Ya,Zong, Lifen,Wang, Jianhua,Yang, Na,Wang, Xiumin,Teng, Da,Mao, Ruoyu,Hao, Ya,Zong, Lifen,Wang, Jianhua. 2016

[5]In silico analysis and recombinant expression of BamA protein as a universal vaccine against Escherichia coli in mice. Guan, Qingfeng,Wang, Xiao,Wang, Xiumin,Teng, Da,Wang, Jianhua,Guan, Qingfeng,Wang, Xiao,Wang, Xiumin,Teng, Da,Wang, Jianhua.

[6]Production of Bacteriocin E50-52 by Small Ubiquitin-Related Modifier Fusion in Escherichia coli. Wang, Qing,Fu, Wenjuan,Ma, Qingshan,Yu, Zhanqiao,Zhang, Rijun. 2013

[7]Design and high-level expression of a hybrid antimicrobial peptide LF15-CA8 in Escherichia coli. Feng, Xing-Jun,Xing, Li-Wei,Liu, Di,Song, Xue-Ying,Li, Jing,Xu, Wen-Shan,Liu, Chun-Long,Li, Zhong-Qiu. 2014

[8]Molecular characters and recombinant expression of the carboxylesterase gene of the meadow moth Loxostege sticticalis L. (Lepidoptera: Pyralidae). Zhong, Tao,Li, Ke-Bin,Cao, Ya-Zhong,Guo, Wei,Wei, Zhao-Jun. 2011

[9]Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. Gu, Wenliang,Xia, Qiyu,Fu, Shaoping,Guo, Jianchun,Yao, Jing,Hu, Xinwen.

[10]High-Yield Recombinant Expression of the Chicken Antimicrobial Peptide Fowlicidin-2 in Escherichia coli. Feng, Xingjun,Xu, Wenshan,Qu, Pei,Li, Xiaochong,Xing, Liwei,Liu, Di,Jiao, Jian,Wang, Jue,Li, Zhongqiu,Liu, Chunlong,Liu, Chunlong.

[11]Molecular analysis and recombinant expression of bovine neutrophil beta-defensin 12 and its antimicrobial activity. Wu, Jianming,Wang, Changfa,He, Hongbin,Yang, Hongjun,Gao, Yundong,Zhong, Jifeng,Hu, Guixue. 2011

[12]Staurosporine from the endophytic Streptomyces sp strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber. Xiao, Lie,Zhang, Bo,Zhang, Xiaoping,Li, Xiaolin,Zheng, Linyong,Gan, Bingcheng,Huang, Pei,Wang, Qian,Liu, Miaomiao,Bolla, Krishna,Liu, Xueting,Zhang, Lixin,Huang, Pei,Wang, Qian,Liu, Xueting. 2014

[13]Structure-function analysis of Avian beta-defensin-6 and beta-defensin-12: role of charge and disulfide bridges. Yang, Ming,Zhang, Chunye,Zhang, Shuping,Zhang, Xuehan,Zhang, Michael Z.,Rottinghaus, George E.,Zhang, Michael Z.,Rottinghaus, George E.,Zhang, Shuping. 2016

[14]The pqqC gene is essential for antifungal activity of Pseudomonas kilonensis JX22 against Fusarium oxysporum f. sp lycopersici. Xu, Jianhong,Xu, Jianhong,Deng, Peng,Baird, Sonya M.,Lu, Shi-En,Showmaker, Kurt C.,Wang, Hui. 2014

[15]In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. Li, Qiang,Chen, Zuqin,Xiong, Chuan,Li, Qiang,Huang, Wenli,Li, Shuhong,Chen, Cheng. 2017

[16]A new fungicide produced by a Streptomyces sp GAAS7310. Chen, GY,Lin, BR,Lin, YC,Xie, FC,Lu, W,Fong, WF. 2005

[17]New Azalomycin F Analogs from Mangrove Streptomyces sp 211726 with Activity against Microbes and Cancer Cells. Yuan, Ganjun,Yuan, Ganjun,Hong, Kui,Lin, Haipeng,Yuan, Ganjun,Hong, Kui,She, Zhigang,Li, Jia. 2013

[18]Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang.

[19]A defensin from clam Venerupis philippinarum: Molecular characterization, localization, antibacterial activity, and mechanism of action. Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Wang, Qing,Wu, Huifeng,Pei, Dong,Cong, Ming,Li, Fei,Ji, Chenglong,Zhao, Jianmin,Zhang, Linbao,Yang, Dinglong,Yuan, Zeyi.

[20]Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. Xiang, Jinsong,Li, Xihong,Chen, Yadong,Lu, Yang,Yu, Mengjun,Chen, Xuejie,Zhang, Wenting,Zeng, Yan,Sun, Luming,Chen, Song Lin,Sha, Zhenxia,Xiang, Jinsong,Chen, Xuejie,Xiang, Jinsong,Chen, Yadong,Lu, Yang,Yu, Mengjun,Chen, Xuejie,Sha, Zhenxia,Li, Xihong,Chen, Song Lin,Yu, Mengjun,Zhang, Wenting,Zeng, Yan,Sun, Luming.

作者其他论文 更多>>