The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot In wheat

文献类型: 外文期刊

第一作者: Hamada, Mohamed Sobhy

作者: Hamada, Mohamed Sobhy;Yin, Yanni;Ma, Zhonghua;Chen, Huaigu

作者机构:

关键词: sharp eyespot;Rhizoctonia cerealis;wheat;soilborne fungi

期刊名称:PEST MANAGEMENT SCIENCE ( 影响因子:4.845; 五年影响因子:4.674 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rhizoctonia cerealis, the causal agent of sharp eyespot on wheat, was not considered to be an important pathogen for many years. Recently, the disease has become endemic in many countries except for South America. The disease has created a new threat to world wheat production because the damage of wheat sharp eyespot has become increasingly severe. In this paper, previous studies on this pathogen, including the disease geographical distribution, pathogen identification, life cycle, symptoms, favourable environmental conditions, effects on wheat yield and control strategy, are reviewed. Such information will be helpful in management of sharp eyespot.

分类号: S4

  • 相关文献

[1]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[2]The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. Wei, Xuening,Shen, Fangdi,Hong, Yantao,Rong, Wei,Du, Lipu,Liu, Xin,Xu, Huijun,Ma, Lingjian,Zhang, Zengyan,Shen, Fangdi,Ma, Lingjian.

[3]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

[4]Changes in Activities of Antioxidant-Related Enzymes in Leaves of Resistant and Susceptible Wheat Inoculated with Rhizoctonia cerealis. Liu Hong-xia,Xin Zhi-yong,Zhang Zeng-yan. 2011

[5]Evaluation of the combination of 1,3-dichloropropene and dazomet as an efficient alternative to methyl bromide for cucumber production in China. Mao, Lian-Gang,Wang, Qiu-Xia,Yan, Dong-Dong,Xie, Hong-Wei,Li, Yuan,Guo, Mei-Xia,Cao, Ao-Cheng.

[6]Evaluation of the Combination of Dimethyl Disulfide and Dazomet as an Efficient Methyl Bromide Alternative for Cucumber Production in China. Mao, Liangang,Yan, Dongdong,Wang, Qiuxia,Li, Yuan,Ouyang, Canbin,Liu, Pengfei,Shen, Jin,Guo, Meixia,Cao, Aocheng,Yan, Dongdong,Wang, Qiuxia,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng.

[7]Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Fahong, W,Wang, X,Sayre, K. 2004

[8]Ecological fitness of fludioxonil-resistant Rhizoctonia cerealis strain and its cross-resistance to DMIs and validamycin. Xia, Xiaoming,Zhao, Ming,Wang, Hongyan,Ma, Hui,Wang, Kaiyun. 2012

[9]A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease. Rong, Wei,Luo, Meiying,Shan, Tianlei,Wei, Xuening,Du, Lipu,Xu, Huijun,Zhang, Zengyan. 2016

[10]Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. Guo, Yingpeng,Li, Wei,Sun, Haiyan,Wang, Ning,Chen, Huaigu,Guo, Yingpeng,Yu, Hanshou. 2012

[11]Characterization of Rhizoctonia cerealis sensitivity to thifluzamide in China. Sun, Haiyan,Wang, Chengfeng,Li, Wei,Zhang, Aixiang,Deng, Yuanyu,Chen, Huaigu.

[12]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[13]The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Du, Lipu,Ye, Xingguo,Liu, Xin,Zhang, Zengyan,Lu, Chungui,Coules, Anne.

[14]Identification and antifungal assay of a wheat beta-1,3-glucanase. Liu, Baoye,Lu, Yan,Xin, Zhiyong,Zhang, Zengyan. 2009

[15]Homozygous and heterozygous point mutations in succinate dehydrogenase subunits b, c and d of Rhizoctonia cerealis conferring resistance to thifluzamide. Sun, Hai-Yan,Lu, Chao-Qun,Li, Wei,Deng, Yuan-Yu,Chen, Huai-Gu.

[16]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[17]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[18]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[19]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[20]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

作者其他论文 更多>>