Repellency of Selected Chemicals Against the Bed Bug (Hemiptera: Cimicidae)

文献类型: 外文期刊

第一作者: Wang, Changlu

作者: Wang, Changlu;Lu, Lihua;Zhang, Aijun;Liu, Chaofeng

作者机构:

关键词: bed bug;repellent;DEET;natural product;essential oil

期刊名称:JOURNAL OF ECONOMIC ENTOMOLOGY ( 影响因子:2.381; 五年影响因子:2.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In recent years, the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), became a major public health concern in urban communities. Bed bugs are notoriously difficult to control, and their bites are not tolerated by most people. The public has an urgent need for materials and methods to reduce bed bug introduction and bites during work, travel, or sleep. A repellent product will help achieve these goals by discouraging and preventing bed bugs from moving to a protected area. We evaluated the repellency of three commercially available insect repellent or control materials and five nonregistered materials with the goal of identifying safe and effective bed bug repellents. The two commercial repellent products that contained7%picaridin or 0.5% permethrin had little repellency against bed bugs. N,N-diethyl-m-toluamide (DEET), the most commonly used insect repellent, provided a high level of repellency against bed bugs. When a host cue (carbon dioxide) was present, theminimumDEETconcentration to repel ≥94%of the bed bugs for a 9-h period was 10%. The longevity of repellency of DEET was concentration dependent. At 25% concentration, DEET-treated fabric surface remained highly repellent to bed bugs for a 14-d period. However, DEET has a strong smell and dissolves certain plastic materials. Therefore, we evaluated several odorless, noncorrosive, and potentially effective repellents. Isolongifolenone and isolongifolanone, two natural products and recently reported insect repellents, exhibited strong repellent property against bed bugs but at significantly lower levels than DEET. Three novel potential repellent compounds discovered by Bedoukian Research Inc. (Danbury, CT) exhibited similar level of repellency and longevity as DEET for repelling bed bugs. These nonirritant and odorless compounds are promising candidates as alternatives to DEET for reducing the spread of bed bugs and bed bug bites.

分类号: Q969.9

  • 相关文献

[1]Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp YXf3. Guo, Zhi Kai,Wang, Rong,Huang, Wei,Jiang, Rong,Tan, Ren Xiang,Ge, Hui Ming,Li, Xiao Nian. 2014

[2]Identification of plant chemicals attracting and repelling whiteflies. Li, Yaofa,Zhong, Suting,Qin, Yuchuan,Li, Yaofa,Gao, Zhanlin,Dang, Zhihong,Pan, Wenliang,Zhang, Shangqing. 2014

[3]Hydrolysis of glycosidically bound volatiles from apple leaves (cv. Anna) by Aspergillus niger beta-glucosidase affects the behavior of codling moth (Cydia pomonella L.). Wei, S,Reuveny, H,Bravdo, BA,Shoseyov, O. 2004

[4]Bioactivity of the neem seed kernel supercritical extracts towards Tribolium castaneum (Herbst). Han, Bingjun,Peng, Lixu,Chen, Lixia,Han, Bingjun. 2012

[5]Non-host plant essential oil volatiles with potential for a "push-pull' strategy to control the tea green leafhopper, Empoasca vitis. Zhang, Zhengqun,Chen, Zongmao,Zhang, Zhengqun.

[6]Identification and Field Evaluation of Non-Host Volatiles Disturbing Host Location by the Tea Geometrid, Ectropis obliqua. Zhang, Zheng-qun,Sun, Xiao-ling,Xin, Zhao-jun,Luo, Zong-xiu,Gao, Yu,Bian, Lei,Chen, Zong-mao.

[7]Volatiles from non-host aromatic plants repel tea green leafhopper Empoasca vitis. Zhang, Zhengqun,Luo, Zongxiu,Gao, Yu,Bian, Lei,Sun, Xiaoling,Chen, Zongmao,Zhang, Zhengqun.

[8]Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae). Zhang, Zhengqun,Bian, Lei,Sun, Xiaoling,Luo, Zongxiu,Xin, Zhaojun,Luo, Fengjian,Chen, Zongmao.

[9]The push-pull strategy for citrus psyllid control. Yan, Huaxue,Zeng, Jiwu,Zhong, Guangyan,Yan, Huaxue,Zeng, Jiwu,Zhong, Guangyan,Yan, Huaxue,Zeng, Jiwu,Zhong, Guangyan.

[10]Gas Chromatography-Mass Spectrometric Analysis of Nematicidal Essential Oil of Valeriana amurensis P Smirn ex Kom (Valerianaceae) Roots and its Activity against Heterodera avenae. Li, Yun Chao,Ji, Hua,Li, Hong Tao. 2015

[11]Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Guan Wenqiang,Li Shufen,Yan Ruixiang,Tang Shaokun,Quan Can. 2007

[12]Comparison of the volatile compounds of crude and processed Atractylodis rhizome analyzed by GC-MS. Zhou, Jie,Guo, Lan-ping,Huang, Lu-qi,Zhou, Jie,Fang, Lei,Wang, Xiao,Zhang, Ji. 2012

[13]Comparison of composition and antifungal activity of Artemisia argyi Levl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Guan, Wenqiang,Li, Shufen,Yan, Ruixiang,Huang, Yanfeng. 2006

[14]Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Chen, Huaiqiong,Yang, Yun,Xue, Jian,Wei, Jianhe,Zhang, Zheng,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang,Yang, Yun,Chen, Hongjiang.

[15]Essential Oil from Sweet Potato Vines, a Potential New Natural Preservative, and an Antioxidant on Sweet Potato Tubers: Assessment of the Activity and the Constitution. Yuan, Bo,Xue, Ling-wei,Zhang, Qiu-yue,Peng, Jun,Kou, Meng,Jiang, Ji-hong,Yuan, Bo,Xue, Ling-wei,Zhang, Qiu-yue,Peng, Jun,Kou, Meng,Jiang, Ji-hong,Kou, Meng,Kong, Wan-wan.

[16]Chemical composition, antimicrobial activity against Staphylococcus aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A. Juss.) Roem. leaves. Wu, Jian-Guo,Wu, Yan-Bin,Wu, Jin-Zhong,Peng, Wei,Yi, Jun,Chen, Ti-Qiang,Wong, Ka-Hing. 2014

[17]Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, delta-cadinene against Psoroptes cuniculi. Guo, Xiao,Shang, Xiaofei,Li, Bing,Zhou, Xu Zheng,Wen, Hao,Zhang, Jiyu.

[18]GC-MS Analysis of Nematicidal Essential Oil of Mentha canadensis Aerial Parts against Heterodera avenae and Meloidogyne incognita. Ji, Hua,Li, Yun Chao,Wen, Zhi Yu,Li, Hong Tao,Ji, Hua,Li, Yun Chao,Wen, Zhi Yu,Li, Hong Tao,Li, Xiu Hua,Zhang, Hai Xin.

[19]Chemical Composition and Antimicrobial Activity of the Essential Oil from Ambrosia trifida L.. Kong, Chui Hua,Zhang, Chao Man.

[20]The chemical components of essential oils from the leaves of 110 species and cultivars of Citrus plants. Huang, YZ,Chen, QY. 1998

作者其他论文 更多>>