Acquisition of Insect-Resistant Transgenic Maize Harboring a Truncated cry1Ah Gene via Agrobacterium-Mediated Transformation

文献类型: 外文期刊

第一作者: Huang Da-fang

作者: Huang Da-fang;Li Xiu-ying;Lang Zhi-hong;Zhu Li;Huang Da-fang;Zhang Jie;He Kang-lai

作者机构:

关键词: Bacillus thuringiensis;truncated cry1Ah gene;insectresistant maize;stable inheritance

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2014 年 13 卷 5 期

页码:

收录情况: SCI

摘要: A novel insecticidal gene cry1Ah was cloned from Bacillus thuringiensis isolate BT8 previously for plant genetic engineering improvement. Truncated active Cry1Ah toxin has a toxicity level similar to that of the full-length Cry1Ah toxin. In this study, plant expression vector pMhGM harboring truncated cry1Ah gene was transformed into maize (Zea mays L.) immature embryos by Agrobacterium tumefaciens-mediated transformation at which maize alcohol dehydrogenase matrix attachment regions (madMARs) were incorporated on both sides of the gene expression cassette to improve gene expression. A total of 23 PCR positive events were obtained with a transformation efficiency of 5% around. Bioassay results showed that events 1-4 and 1-5 exhibited enhanced resistance to the Asian corn borer (Ostrinia furnacalis). These two events were further confirmed by molecular analysis. Southern blot suggested that a single copy of the cry1Ah gene was successfully integrated into the maize genome. Western blot and ELISA showed that the foreign gene cry1Ah was expressed stably at high level in maize and could be inherited stably over generations. The results of a bioassay of T1-T4 transgenic maize plants indicated that the transgenic plants were highly toxic to the Asian corn borer and their resistance could be inherited stably from generation to generation. Thus, events 1-4 and 1-5 are good candidates for the breeding of insect-resistant maize.

分类号:

  • 相关文献

[1]Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Huang, Dafang,Li, Xiuying,Li, Shengyan,Lang, Zhihong,Zhu, Li,Huang, Dafang,Li, Shengyan,Zhang, Jie. 2013

[2]Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. Jinjie Cui,Junyu Luo,Wopke Van Der Werf,Yan Ma,Jingyuan Xia.

[3]Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae). Zhang, L.,Huang, T.,Huang, Z.,Xu, L.,Wu, C.,Guan, X.,Qiu, S.,Gelbic, I..

[4]A multicomponent sugar phosphate sensor system specifically induced in Bacillus cereus during infection of the insect gut. Peng, Qi,Buisson, Christophe,Lereclus, Didier,Nielsen-LeRoux, Christina,Song, Fuping,Peng, Qi,Zhang, Jie,Nielsen-LeRoux, Christina,Huang, Dafang,Brillard, Julien,Broussolle, Veronique,Brillard, Julien,Broussolle, Veronique,de Been, Mark,Abee, Tjakko.

[5]Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth. Cui, Lei,Wang, Li,Liu, Yumei,Zhuang, Mu,Zhang, Yangyong,Fang, Zhiyuan,Yang, Limei,Zhang, Jie,Lang, Zhihong.

[6]The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Guo, Zhaojiang,Kang, Shi,Zhu, Xun,Wu, Qingjun,Wang, Shaoli,Xie, Wen,Zhang, Youjun.

[7]A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab. Xu, Lina,Wang, Zhenying,Zhang, Jie,He, Kanglai,Xu, Lina,Ferry, Natalie,Edwards, Martin G.,Gatehouse, Angharad M. R.,Xu, Lina.

[8]Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian, Xiao-ge,He, Yu-rong,Zhao, Rui,Lu, Li-hua.

[9]Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia fumacalis (Guenee). Duan, Xiaoli,Wang, Zhenying,He, Kanglai,Bravo, Alejandra,Soberon, Mario.

[10]Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations-oil-based formulation and wettable powder-combined with Bacillus thuringiensis. Nian, Xiao-ge,He, Yu-rong,Zhao, Rui,Lu, Li-hua.

[11]Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera : Pyralidae) to Bacillus thuringiensis toxins in China. Hou, M. L.,Peng, Y. F.,Liu, P. L..

[12]Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. Zhang, J.,Song, F.,Shao, T.,Huang, D.,Gu, A.,Uwais, A..

[13]Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3. Liu, Yuxiao,Liang, Gemei,Song, Fuping,Zhou, Xueping,Zhang, Jie,Huang, Yongping,Bravo, Alejandra,Soberon, Mario.

[14]Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Liu, Jingjing,Yan, Guixin,Shu, Changlong,Zhao, Can,Song, Fuping,Zhou, Lin,Ma, Junlan,Zhang, Jie,Liu, Chunqin,Huang, Dafang.

[15]Identification, distribution pattern of IS231 elements in Bacillus thuringiensis and their phylogenetic analysis. Liu, JJ,Song, FP,Shu, CL,Qiu, JZ,Guan, X,Huang, DF,Zhang, J.

[16]Identification of the minimal active fragment of the Cry1Ah toxin. Zhou, Zishan,Song, Fuping,Shu, Changlong,Zhang, Jie,Huang, Dafang.

[17]Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. Tian, Jun-Ce,Shen, Zhi-Chen,Hu, Cui,Ye, Gong-Yin,Chen, Yang,Tian, Jun-Ce,Shen, Zhi-Chen,Hu, Cui,Ye, Gong-Yin,Peng, Yu-Fa,Guo, Yu-Yuan.

[18]Reproductive Cost Associated With Juvenile Hormone in Bt-Resistant Strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Wang, B. J.,Chen, L.,Khaing, M. M.,Lu, Y. H.,Liang, G. M.,Guo, Y. Y.,Ma, L..

[19]Adult Exposure to Bt Toxin Cry1Ac Reduces Life Span and Reproduction of Resistant and Susceptible Pink Bollworm (Lepidoptera: Gelechiidae). Li, Xianchun,Wu, Kongming,Wan, Peng,Cong, Shengbo,Huang, Minsong,Wang, Jintao,Tabashnik, Bruce E.,Li, Xianchun.

[20]Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. He, Fei,Li, Jianghuai,Yang, Yongbo,Ai, Hui,Peng, Jianxin,Hong, Huazhu,Liu, Kaiyu,Xiao, Yutao,Liu, Chenxi.

作者其他论文 更多>>