Establishment of a Highly Efficient Regeneration System for the Mature Embryo Culture of Wheat

文献类型: 外文期刊

第一作者: Yin Gui-xiang

作者: Yin Gui-xiang;Wang Yan-li;She Mao-yun;Du Li-pu;Xu Hui-jun;Ye Xing-guo;Ma Jing-xiu

作者机构:

关键词: wheat;mature embryo culture;scraping treatment;Adi medium;highly efficient regeneration

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2011 年 10 卷 1 期

页码:

收录情况: SCI

摘要: Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign genes into wheat. By using the mature embryos derived from 20 different wheat lines including Shi 4185, Yumai 66, Lunxuan 987, CB037, Yangmai 6, Xinchun 9, Bobwhite, Han 6172, Zheng 9023, Jimai 20, Ningchun 4, and Jing 411, the effects of some factors including inoculation methods, initiating culture media, organic additives, antioxidants, and auxins on the regeneration from the explants were evaluated. The results indicated that the scraping embryo culture was better than the whole embryo culture, the Aa medium was better than the SD2 medium and dicamba was better than 2,4-D in increasing the regeneration frequency. An Adi medium was established in this study by adding silver nitrate, cysteine, ascorbic acid, dicamba, glutamine into the Aa medium at the concentration of 4, 40, 100, 2, and 5 mg L(-1), respectively. By using the Adi medium and the scraping technique, the regeneration frequencies of the mature embryos of CB037, Lunxuan 987, Han 6172, Yangmai 6, Bobwhite, Zheng 9023, Shi 4185, and Jimai 20 became 85.6, 60.1, 46.0, 42.1, 42.0, 34.0, 33.0, and 32.0%, respectively, which were about 5-8 times higher than that obtained from the conventional culture mediums and techniques. This novel regeneration system could be helpful in wheat transformation.

分类号:

  • 相关文献

[1]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[2]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[3]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[4]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[5]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

[6]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[7]Assessment of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Wang Da-cheng,Wang Ji-hua,Wang Da-cheng,Li Cun-jun,Song Xiao-yu,Wang Ji-hua,Yang Xiao-dong,Huang Wen-jiang,Wang Jun-ying,Zhou Ji-hong. 2011

[8]Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem. Feng, Xiaoxiao,Pan, Lixiang,Zhang, Hongyan,Yu, Jianlei,Song, Guochun. 2016

[9]Competitive interaction in a jujube tree/wheat agroforestry system in northwest China's Xinjiang Province. Zhang, W.,Wang, B. J.,Gan, Y. W.,Duan, Z. P.,Hao, X. D.,Lv, X.,Li, L. H.,Xu, W. L.. 2017

[10]Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines. Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Xu, Wen,Shen, Hao,Zhao, Shijie. 2016

[11]Preliminary Study on the Physiological Characteristics of Transgenic Wheat with Maize C-4-pepc Gene in Field Conditions. Han, L. L.,Han, L. L.,Xu, W. G.,Hu, L.,Li, Y.,Qi, X. L.,Zhang, J. H.,Zhang, H. F.,Wang, Y. X.. 2014

[12]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[13]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[14]NOVEL FLUORESCENT SEQUENCE-RELATED AMPLIFIED POLYMORPHISM (FSRAP) MARKERS FOR THE CONSTRUCTION OF A GENETIC LINKAGE MAP OF WHEAT (Triticum aestivum L.). Zhang, Li,Yu, Yan,Wei, Shuhong,Yang, Jun,Yang, Zaijun,Qu, Jipeng,Peng, Zhengsong,Lu, Lu,Yang, Wuyun. 2017

[15]Different Tolerance in Bread Wheat, Durum Wheat and Barley to Fusarium Crown Rot Disease Caused by Fusarium pseudograminearum. Liu, Yaxi,Wei, Yuming,Zheng, Youliang,Liu, Yaxi,Ma, Jun,Yan, Wei,Liu, Chunji,Ma, Jun,Yan, Guijun,Yan, Wei,Zhou, Meixue,Zhou, Meixue. 2012

[16]Research on Rapid and Non-Destructive Identification of Aging Wheat Based on ATR-Terahertz Spectroscopy Combined with PLS-DA. Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Liu Long-hai,Jiang, Justin. 2016

[17]ASSIMILA TION OF REMOTELY SENSED CANOPY VARIABLES INTO CROP MODELS FOR AN ASSESSMENT OF DROUGHT-RELATED YIELD LOSSESS: A COMPARSION OF MODELS OF DIFFERENT COMPLEXITY. Casa, R.,Silvestro, P. C.,Yang, H.,Yang, G.,Pignatti, S.,Pascucci, S.,Yang, H.,Yang, G.. 2016

[18]Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Kong, Lingan,Sun, Mingze,Xie, Yan,Wang, Fahong,Zhao, Zhendong,Sun, Mingze. 2015

[19]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[20]Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Zhang Wei,Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xiao Le-le,Ye Xing-guo,Fan Rong. 2015

作者其他论文 更多>>