Soil Moisture Estimation by Combining L-Band Brightness Temperature and Vegetation Related Information
文献类型: 外文期刊
作者: Fu, Yuanyuan 1 ; Zhao, Chunjiang 1 ; Yang, Guijun 1 ; Feng, Haikuan 1 ;
作者机构: 1.Minist Agr PR China, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
关键词: Soil moisture; L-band brightness temperature; Vegetation water content; Normalized difference infrared index; Leaf area index; Enhanced vegetation index
期刊名称:COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, CCTA 2017, PT II
ISSN: 1868-4238
年卷期: 2019 年 546 卷
页码:
收录情况: SCI
摘要: Passive radiometry at L-band has been widely accepted as one of the most promising techniques for monitoring soil moisture content (SMC). However, with vegetation cover, the scatter and attenuation of microwave signals by vegetation make the discrimination of SMC related signal complicated. To improve SMC estimate, this study proposed the combined use of L-band brightness temperature (T-B) and optical remote sensing data to take into account the effect of vegetation. The normalized difference infrared index (NDII) and enhanced vegetation index (EVI) were used as proxy for including the effect of vegetation water content and structure. Considering viewing angle effects, T-B data were normalized to three different angles (7 degrees, 21.5 degrees, and 38.5 degrees). The model based on the combination of NDII and horizontally polarized TB normalized to 7 degrees produced the best result (R-2 = 0.678, RMSE = 0.026 m(3)/m(3)). It suggests that involving NDII into the model could significantly improve pasture covered SMC estimation accuracy.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding



