您好,欢迎访问河南省农业科学院 机构知识库!

Identification and Validation of Quantitative Trait Loci for Grain Size in Bread Wheat (Triticum aestivum L.)

文献类型: 外文期刊

作者: Hu, Wenjing 1 ; Liao, Sen 3 ; Zhao, Die 3 ; Jia, Jizeng 1 ; Xu, Weigang 1 ; Cheng, Shunhe 3 ;

作者机构: 1.Henan Agr Univ, Coll Agron, Zhengzhou 450046, Peoples R China

2.Henan Agr Univ, Ctr Crop Genome Engn, Zhengzhou 450046, Peoples R China

3.Minist Agr & Rural Affairs, Lixiahe Inst Agr Sci, Key Lab Wheat Biol & Genet Improvement Low & Midd, Yangzhou 225007, Jiangsu, Peoples R China

4.Chinese Acad Agr Sci CAAS, Inst Crop Sci, Beijing 100081, Peoples R China

5.Henan Acad Agr Sci, Henan Key Lab Wheat Germplasm Resources Innovat &, Key Lab Wheat Biol & Genet Breeding Cent Huanghua, Inst Crop Mol Breeding,Natl Engn Lab Wheat,Minist, Zhengzhou 450002, Peoples R China

关键词: grain width; grain length; KASP marker; QTL mapping; Triticum aestivum

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )

ISSN:

年卷期: 2022 年 12 卷 6 期

页码:

收录情况: SCI

摘要: Grain width (GW) and grain length (GL) are crucial components affecting grain weight. Dissection of their genetic control is essential for improving yield potential in wheat breeding. Yangmai 12 (YM12) and Yanzhan 1 (YZ1) are two elite cultivars released in the Middle and Lower Yangtze Valleys Wheat Zone (MLYVWZ) and the Yellow-Huai River Valleys Wheat Zone (YRVWZ), respectively. One biparental population derived from YM12/YZ1 cross was employed to perform QTL mapping based on the data from four environments over two years to detect quantitative trait loci (QTL) for GW and GL. A total of eight QTL were identified on chromosomes 1B, 2D, 3B, 4B, 5A, and 6B. Notably, QGW.yz.2D was co-located with QGL.yz.2D, and QGW.yz.4B was co-located with QGL.yz.4B, respectively. QGW.yz.2D and QGL.yz.2D, with the increasing GW/GL allele from YZ1, explained 12.36-18.27% and 13.69-26.53% of the phenotypic variations for GW and GL, respectively. OGW.yz.4B and QGL.yz.4B, with the increasing GW/GL allele from YM12, explained 10.34-11.95% and 10.35-16.04% of the phenotypic variation for GW and GL, respectively. QGL.yz.5A, with the increasing GL allele from YM12, explained 10.04-12.48% of the phenotypic variation for GL. Moreover, the positive alleles of these three QTL regions could significantly increase thousand-grain weight, and QGW.yz.4B/QGL.yz.4B and QGL.yz.5A did not show significant negative effects on grain number per spike. QGL.yz.2D, OGW.yz.4B/OGL.yz.4B, and QGL.yz.5A have not been reported. These three QTL regions were then further validated using Kompetitive Allele-Specific PCR (KASP) markers in 159 wheat cultivars/lines from MLYVWZ and YRVWZ. Combining the positive alleles of the major QTL significantly increased GW and GL. Eleven candidate genes associated with encoding ethyleneresponsive transcription factor, oleosin, osmotin protein, and thaumatin protein were identified. Three major QTL and KASP markers reported here will be helpful in developing new wheat cultivars with high and stable yields.

  • 相关文献
作者其他论文 更多>>