Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis
文献类型: 外文期刊
作者: Wang, Xiaoyu 1 ; Chen, Zhiyi 1 ; Feng, Hui 1 ; Chen, Xi 1 ; Wei, Lihui 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing 210014, Jiangsu, Peoples R China
关键词: Surfactin; oppA; Metabolomics; CCR; ccpA; Global regulator
期刊名称:MICROBIAL CELL FACTORIES ( 影响因子:5.328; 五年影响因子:5.588 )
ISSN:
年卷期: 2019 年 18 卷 1 期
页码:
收录情况: SCI
摘要: BackgroundBacillus subtilis 916 has been identified as an effective biocontrol agent against Rhizoctonia solani, the causal pathogen of rice sheath blight, under greenhouse and field conditions. HPLC analysis showed that surfactin, a member of the lipopeptide family produced by B. subtilis, was the major antimicrobial substance.ResultsPreviously, we obtained a mutant strain of B. subtilis 916, Bs-H74, which produced significantly more surfactin than the wild type and presented 10% stronger inhibitory activity against R. solani. To explore the molecular mechanism underlying the higher surfactin productivity in the mutant, high-throughput proteomic analysis was carried out to analyze the differential protein expression. Our results showed that several differentially expressed proteins are involved in OppA, DegU and Carbon Catabolite Repression (CCR) regulatory pathways, which could be positively or negatively associated with surfactin biosynthesis. At both transcriptional and translational levels, we suggested that OppA may play a key role in surfactin synthesis regulation. Based on the above findings, we proposed the hypothesis that a point mutation in the oppA gene may lead to changes in oligopeptides acquisition in B. subtilis, and then the changed oligopeptides may activate or suppress the global regulatory protein, CcpA in the CCR pathway, and ComA and DegU may indirectly regulate surfactin synthesis in Bs-H74. To further explore the regulatory mechanisms in Bs-H74, metabolomics analysis was performed in this study. Interestingly, only 16 metabolites showed changes in abundance in Bs-H74 compared to Bs-916. Neohesperidin, a type of natural flavanone glycosides from citrus with a range of biological activities, increased by 18 times over the wild type Bs-916. This result implied exciting findings in regulatory mechanisms by OppA protein.ConclusionsIn summary, this study has revealed the mechanisms underlying the improved antagonistic property with increased surfactin production in Bs-H74 at the gene, protein and metabolic levels, which may help to comprehend the map of the regulatory networks in B. subtilis. Findings from our work have provided a solid physical and theoretical basis for practically applying metabolic and genetic engineering to achieve improved and high-yielding biocontrol strains.
- 相关文献
作者其他论文 更多>>
-
The HOG-pathway related AaOS1 leads to dicarboximide-resistance in field strains of Alternaria alternata and contributes, together with the Aafhk1, to mycotoxin production and virulence
作者:Chen, Changjun;Wang, Xiaoyu;Wei, Lingling;Chen, Bin;Li, Xiujuan;Shi, Haiping;Xie, Shuai;Hu, Hao;Chen, Changjun;Chen, Wenchan;Wei, Lihui;Wang, Xiaoyu
关键词:garlic leaf spot; Alternaria alternata; dicarboximides; mutations; mycotoxin AOH
-
Growth, Enzymatic, and Transcriptomic Analysis of xyr1 Deletion Reveals a Major Regulator of Plant Biomass-Degrading Enzymes in Trichoderma harzianum
作者:Wang, Lunji;Zhao, Yishen;Wen, Xian;Jiu, Min;Zhao, Yishen;Chen, Siqiao;Wen, Xian;Anjago, Wilfred Mabeche;Tian, Tianchi;Chen, Yajuan;Zhang, Jinfeng;Deng, Sheng;Zhou, Dongmei;Wei, Lihui;Daly, Paul;Chen, Siqiao;Chen, Yajuan;Fu, Pengxiao;Druzhinina, Irina S.
关键词:CAZymes; XYR1/XlnR/XLR-1; cellulose; transcriptional regulation
-
Biological Control of a Root-Knot Nematode Meloidogyne incognita Infection of Tomato (Solanum lycopersicum L.) by the Oomycete Biocontrol Agent Pythium oligandrum
作者:Xue, Yuwei;Li, Weishan;Jiu, Min;Xue, Yuwei;Li, Weishan;Li, Mengnan;Ru, Ningchen;Chen, Siqiao;Feng, Hui;Wei, Lihui;Daly, Paul;Zhou, Dongmei;Li, Weishan;Li, Mengnan;Ru, Ningchen;Wei, Lihui;Chen, Siqiao
关键词:Pythium oligandrum; Meloidogyne incognita; biological control; tomato; induced resistance
-
Borrelidin-producing and root-colonizing Streptomyces rochei is a potent biopesticide for two soil-borne oomycete-caused plant diseases
作者:Zhou, Dongmei;Wang, Xiaoyu;Anjago, Wilfred Mabeche;Li, Jingjing;Li, Weishan;Li, Mengnan;Zhang, Qimeng;Zhang, Jinfeng;Deng, Sheng;Daly, Paul;Wei, Lihui;Jiu, Min;Ye, Yonghao;Navarro-Munoz, Jorge C.;Wei, Lihui;Navarro-Munoz, Jorge C.
关键词:Biopesticide; Streptomyces; Oomycetes; Borrelidin; Colonization; Biosynthetic gene clusters
-
Staurosporine-producing Streptomyces sp. strain 11 x 1 cell-free culture filtrates control diseases caused by the oomycete plant pathogens Pythium myriotylum and Phytophthora sojae
作者:Wen, Xian;Wang, Lunji;Li, Jingjing;Jiu, Min;Wen, Xian;Li, Jingjing;Chen, Yifan;Zhuo, Deyu;Anjago, Wilfred Mabeche;Zhu, Hongli;Zhang, Qimeng;Zhang, Jinfeng;Wang, Xiaoyu;Wei, Lihui;Daly, Paul;Zhou, Dongmei;Chen, Yifan;Wei, Lihui;Peng, Hao;Wang, Lunji;Daly, Paul;Zhou, Dongmei
关键词:Streptomyces; Pythium myriotylum; Phytophthora sojae; Biological control; Ginger; Soybean
-
Genus-wide analysis of Trichoderma antagonism toward Pythium and Globisporangium plant pathogens and the contribution of cellulases to the antagonism
作者:Chen, Siqiao;Cai, Feng;Shen, Qirong;Chen, Siqiao;Cai, Feng;Shen, Qirong;Chen, Siqiao;Daly, Paul;Anjago, Wilfred Mabeche;Wang, Rong;Zhao, Yishen;Wen, Xian;Zhou, Dongmei;Deng, Sheng;Wei, Lihui;Zhao, Yishen;Wen, Xian;Lin, Xisha;Voglmeir, Josef;Druzhinina, Irina S.
关键词:Trichoderma; Pythium; genus-wide analysis; parasitism; exo-proteomics; Globisporangium
-
A major gene for chilling tolerance variation in Indica rice codes for a kinase OsCTK1 that phosphorylates multiple substrates under cold
作者:Wu, Jiawen;Liu, Huimin;Zhang, Yan;Zhang, Yingdong;Li, Dongling;Liu, Shiyan;Lu, Shan;Zou, Baohong;Liu, Huimin;Zhang, Yan;Wei, Lihui;Hua, Jian
关键词:chilling tolerance; GWAS; haplotype; natural variation; OsCTK1; phosphorylation



