Analysis of the Spatial and Temporal Pattern of Changes in Abandoned Farmland Based on Long Time Series of Remote Sensing Data
文献类型: 外文期刊
作者: Wei, Zhonghui 1 ; Gu, Xiaohe 1 ; Sun, Qian 1 ; Hu, Xueqian 1 ; Gao, Yunbing 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Henan, Peoples R China
3.China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
4.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
关键词: cultivated land abandonment; reclamation; change detection; time-series analysis; remote sensing monitoring
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2021 年 13 卷 13 期
页码:
收录情况: SCI
摘要: With the rapid increase in the costs of rural labour and the adjustment of planting structures, the phenomenon of farmland abandonment has appeared in China. It is of great significance to promptly and accurately grasp the information on dynamic temporal and spatial changes in abandoned farmland to ensure national food security and the sustainable use of cultivated land. Luquan District in Hebei, China was selected as the research area based on multispectral images from Sentinel-2A, Landsat-7, and Landsat-8 combined with methods of random forest (RF) classification and vegetation index change detection. Rules for the identification of abandoned farmland were also developed, and remote sensing monitoring of the abandonment status of the cultivated land was also carried out in the study area. We also obtained the spatial distribution of abandoned and reclaimed farmland and analysed the frequency of farmland abandonment. The results show that the overall accuracy of the land-use time-series map ranged from 90.20% to 96.92% for the study period of 2010-2020. The average rate of farmland abandonment in the study area was 10.62%, with the lowest rate (5.83%) in 2020 and the highest (14.09%) in 2012. From 2011 to 2020, the maximum farmland abandonment area was 3906.02 hm(2), and the minimum area was 1618.74 hm(2). The farmland abandonment area showed a trend of first increasing and then decreasing. From 2012 to 2020, the maximum area of reclaimed farmland was 291.49 hm(2), and the highest rate of reclamation was 14.26%. The overall reclamation rate was low. The abandonment frequency of most of the abandoned farmland was 1-3 years, covering an area of 8193.73 hm(2), which comprised 79% of the total area of abandoned farmland. The frequency of abandonment was inversely proportional to the area of abandoned farmland. Farmland abandonment mainly occurred in hilly areas. We expect that our results can provide case studies for long time series in farmland abandonment research and can provide a reference for studying the driving factors, risk assessment, and policymaking with respect to abandoned farmland.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
A Novel Approach for Maize Straw Type Recognition Based on UAV Imagery Integrating Height, Shape, and Spectral Information
作者:Liu, Xin;Gong, Huili;Guo, Lin;Zhou, Jingping;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gong, Huili;Guo, Lin;Gu, Xiaohe;Zhou, Jingping
关键词:maize straw type; multispectral imagery; SESI; object-oriented classification; UAV
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change
-
Extraction of the upright maize straw by integrating UAV multispectral and DSM data
作者:Chao, Aosheng;Xing, Enguang;Gao, Yunbing;Li, Cunjun;Qin, Yuan;Zhu, Chengyang;Liu, Yu;Chao, Aosheng;Zhu, Chengyang;Zhu, Qingwei
关键词:Upright maize straw; UAV; New straw index; Spectral characteristics; Digital surface model
-
Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed
作者:Tang, Boyi;Zhou, Jingping;Zhao, Chunjiang;Pan, Yuchun;Lu, Yao;Liu, Chang;Ma, Kai;Sun, Xuguang;Gu, Xiaohe;Tang, Boyi;Zhou, Jingping;Zhang, Ruifang
关键词:Object detection; Maize seedlings; Weed disturbance; YOLO; UAV multispectral images
-
Remote Sensing Dissolved Organic Matter in Freshwater Aquaculture Ponds by the Integration of UAV and Satellite Multispectral Images
作者:Chen, Guangxin;Chen, Tianen;Chen, Guangxin;Wang, Yancang;Gu, Xiaohe
关键词:Aquaculture; Autonomous aerial vehicles; Water quality; Remote sensing; Monitoring; Satellites; Satellite images; Accuracy; Estimation; Reflectivity; Dissolved organic matter; uncrewed aerial vehicle (UAV); multi-source remote sensing; freshwater aquaculture; machine learning
-
Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes
作者:Cui, Yanglin;Zhao, Chunjiang;Pan, Yuchun;Ma, Kai;Gu, Xiaohe;Cui, Yanglin;Liu, Xiaojun
关键词:Spatial Consistency; Landscape Index; Land Cover products; Hexagonal sampling; China



