文献类型: 外文期刊
作者: Yue, Jibo 1 ; Tian, Qingjiu 2 ; Liu, Yang 3 ; Fu, Yuanyuan 1 ; Tian, Jia 2 ; Zhou, Chengquan 3 ; Feng, Haikuan 3 ; Yang, Guijun 3 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
2.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
4.China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing 100083, Peoples R China
5.Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
关键词: Convolutional neural network; RRC; RTM; Machine learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 215 卷
页码:
收录情况: SCI
摘要: Accurate determination of rice residue cover (RRC) can improve the monitoring of tillage information. Currently, the accurate determination of RRC using optical remote sensing is hindered by variations in cropland moisture and cover of following crops. The fractional cover (FC) of the soil (fS), crop (fC), and crop residue (fCR) changes (fS + fC + fCR = 1) after the following crop is planted, which increases the difficulty of remote-sensing RRC estimation. Cropland soil moisture and crop residue moisture affect the values of cropland and crop residue spectral indices (CRSIs), thereby reducing the accuracy of remote-sensing RRC estimation. Deep learning techniques (e.g., convolutional neural networks [CNN] and transfer learning [TL]) have been proven to extract the deep features of input images with distortion invariance, such as displacement and scaling, which are similar to moisture and the following crop effects on remote-sensing CRSIs. This study aimed to evaluate the combined use of deep features of cropland spectra extracted by deep learning techniques to estimate the cropland RRC under the effects of variations in cropland moisture and cover of the following crops. This study proposes an RRCNet CNN that fuses deep and shallow features to improve RRC estimation. A PROSAIL radiative transfer model was employed to simulate a cropland "soil-crop-crop residue" mixed spectra dataset (n = 103,068), considering the variations in cropland moisture and the cover of the following crop. The RRCNet was first pre-trained using the simulated dataset, and then the knowledge from the pre-trained RRCNet was updated based on field experimental FCs, RRCs, and Sentinel-2 image spectra using the TL technique. Our study indicates that RRCNet can incorporate shallow and deep spectral features of cropland "soil-crop-crop residue" mixed spectra, providing high-performance FCs and RRC estimation. The FCs and RRC estimates from RRCNet + TL (FCs: R2 = 0.939, root mean squared error (RMSE) = 0.071; RRC: R2 = 0.891, RMSE = 0.083) were more accurate than those from CRSI + multiple linear regression, CRSI + random forest, and CRSI + support vector machine (FCs: R2 = 0.877-907, RMSE = 0.086-0.101; RRC: R2 = 0.378-0.714, RMSE = 0.133-0.229). We mapped the multistage RRC based on Sentinel-2 multispectral instrument (MSI) images and RRCNet. Tillage information can be inferred from RRC and RRC difference maps changes.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



