文献类型: 外文期刊
作者: Yue, Jibo 1 ; Tian, Qingjiu 2 ; Liu, Yang 3 ; Fu, Yuanyuan 1 ; Tian, Jia 2 ; Zhou, Chengquan 3 ; Feng, Haikuan 3 ; Yang, Guijun 3 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
2.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
4.China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing 100083, Peoples R China
5.Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
关键词: Convolutional neural network; RRC; RTM; Machine learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 215 卷
页码:
收录情况: SCI
摘要: Accurate determination of rice residue cover (RRC) can improve the monitoring of tillage information. Currently, the accurate determination of RRC using optical remote sensing is hindered by variations in cropland moisture and cover of following crops. The fractional cover (FC) of the soil (fS), crop (fC), and crop residue (fCR) changes (fS + fC + fCR = 1) after the following crop is planted, which increases the difficulty of remote-sensing RRC estimation. Cropland soil moisture and crop residue moisture affect the values of cropland and crop residue spectral indices (CRSIs), thereby reducing the accuracy of remote-sensing RRC estimation. Deep learning techniques (e.g., convolutional neural networks [CNN] and transfer learning [TL]) have been proven to extract the deep features of input images with distortion invariance, such as displacement and scaling, which are similar to moisture and the following crop effects on remote-sensing CRSIs. This study aimed to evaluate the combined use of deep features of cropland spectra extracted by deep learning techniques to estimate the cropland RRC under the effects of variations in cropland moisture and cover of the following crops. This study proposes an RRCNet CNN that fuses deep and shallow features to improve RRC estimation. A PROSAIL radiative transfer model was employed to simulate a cropland "soil-crop-crop residue" mixed spectra dataset (n = 103,068), considering the variations in cropland moisture and the cover of the following crop. The RRCNet was first pre-trained using the simulated dataset, and then the knowledge from the pre-trained RRCNet was updated based on field experimental FCs, RRCs, and Sentinel-2 image spectra using the TL technique. Our study indicates that RRCNet can incorporate shallow and deep spectral features of cropland "soil-crop-crop residue" mixed spectra, providing high-performance FCs and RRC estimation. The FCs and RRC estimates from RRCNet + TL (FCs: R2 = 0.939, root mean squared error (RMSE) = 0.071; RRC: R2 = 0.891, RMSE = 0.083) were more accurate than those from CRSI + multiple linear regression, CRSI + random forest, and CRSI + support vector machine (FCs: R2 = 0.877-907, RMSE = 0.086-0.101; RRC: R2 = 0.378-0.714, RMSE = 0.133-0.229). We mapped the multistage RRC based on Sentinel-2 multispectral instrument (MSI) images and RRCNet. Tillage information can be inferred from RRC and RRC difference maps changes.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits
作者:Li, Mengzhuo;Qin, Peiyou;Zou, Liang;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Liu, Yang;Zhao, Xiaoyan;Qin, Peiyou
关键词:Plant-based proteins; protein sources; in vitro digestion; processing; health benefits
-
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ x Acipenser baerii ♀)
作者:Ren, Yuanyuan;Cheng, Bo;Ren, Yuanyuan;Tian, Yuan;Liu, Yang;Yu, Huanhuan
关键词:hypoxia; physiological response; hypoxia-induced factor; HIF pathway; hybrid sturgeon
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal