Hyperspectral-Based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables
文献类型: 外文期刊
作者: Fan, Lingling 1 ; Zhao, Jinling 1 ; Xu, Xingang 2 ; Liang, Dong 1 ; Yang, Guijun 2 ; Feng, Haikuan 2 ; Yang, Hao 2 ; Wang 1 ;
作者机构: 1.Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applic, Hefei 230601, Anhui, Peoples R China
2.Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
关键词: hyperspectral; leaf nitrogen content (LNC); successive projections algorithm (SPA); partial least squares (PLS) model; random forest (RF) model
期刊名称:SENSORS ( 影响因子:3.576; 五年影响因子:3.735 )
ISSN: 1424-8220
年卷期: 2019 年 19 卷 13 期
页码:
收录情况: SCI
摘要: Accurate and dynamic monitoring of crop nitrogen status is the basis of scientific decisions regarding fertilization. In this study, we compared and analyzed three types of spectral variables: Sensitive spectral bands, the position of spectral features, and typical hyperspectral vegetation indices. First, the Savitzky-Golay technique was used to smooth the original spectrum, following which three types of spectral parameters describing crop spectral characteristics were extracted. Next, the successive projections algorithm (SPA) was adopted to screen out the sensitive variable set from each type of parameters. Finally, partial least squares (PLS) regression and random forest (RF) algorithms were used to comprehensively compare and analyze the performance of different types of spectral variables for estimating corn leaf nitrogen content (LNC). The results show that the integrated variable set composed of the optimal ones screened by SPA from three types of variables had the best performance for LNC estimation by the validation data set, with the values of R-2, root means square error (RMSE), and normalized root mean square error (NRMSE) of 0.77, 0.31, and 17.1%, and 0.55, 0.43, and 23.9% from PLS and RF, respectively. It indicates that the PLS model with optimally multitype spectral variables can provide better fits and be a more effective tool for evaluating corn LNC.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



