Spectral fusion modeling for soil organic carbon by a parallel input-convolutional neural network
文献类型: 外文期刊
作者: Hong, Yongsheng 1 ; Chen, Songchao 2 ; Hu, Bifeng 3 ; Wang, Nan 1 ; Xue, Jie 1 ; Zhuo, Zhiqing 4 ; Yang, Yuanyuan 5 ; Chen, Yiyun 6 ; Peng, Jie 7 ; Liu, Yaolin 6 ; Mouazen, Abdul Mounem 8 ; Shi, Zhou 1 ;
作者机构: 1.Zhejiang Univ, Inst Agr Remote Sensing & Informat Technol Applica, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
2.ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
3.Jiangxi Univ Finance & Econ, Sch Tourism & Urban Management, Nanchang 330013, Peoples R China
4.Zhejiang Acad Agr Sci, Inst Digital Agr, Hangzhou 310021, Peoples R China
5.Zhejiang Univ City Coll, Sch Spatial Planning & Design, Hangzhou 310015, Peoples R China
6.Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
7.Tarim Univ, Coll Plant Sci, Alar 843300, Peoples R China
8.Univ Ghent, Dept Environm, Coupure Links 653, B-9000 Ghent, Belgium
9.VYTAUTAS MAGNUS Univ, Fac Engn, Dept Agr Engn & Safety, Kaunas, Lithuania
关键词: Soil analysis; Visible-to-near-infrared spectroscopy; Mid-infrared spectroscopy; Data fusion; Deep learning
期刊名称:GEODERMA ( 影响因子:6.1; 五年影响因子:7.0 )
ISSN: 0016-7061
年卷期: 2023 年 437 卷
页码:
收录情况: SCI
摘要: Visible-to-near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy have been widely utilized for the quantitative estimation of soil organic carbon (SOC). The fusion of vis-NIR and MIR data can be hypothesized to provide accurate and reliable prediction for SOC because spectral data within a specific range of each individual sensor may lack important absorptive features associated with SOC. In this study, six data fusion strategies, principally direct concatenation-partial least squares regression (DC-PLSR), outer product analysis-PLSR (OPAPLSR), OPA-competitive adaptive reweighted sampling-PLSR (OPA-CARS-PLSR), sequentially orthogonalizedPLSR (SO-PLSR), DC-convolutional neural network (DC-CNN), and parallel input-CNN (PI-CNN), were compared for the spectral estimations of SOC. The data fusion and individual sensor models were developed using soil samples collected from Zhejiang Province, East China, and scanned under laboratory conditions with both vis-NIR and MIR spectrophotometers. The validation results of vis-NIR (validation coefficient of determination [R2] = 0.63-0.73) were generally better than those of MIR (validation R2 = 0.45-0.59). For data fusion, the best validation accuracy was achieved by the PI-CNN (validation R2 = 0.84), followed in descending order by DC-CNN (validation R2 = 0.78), SO-PLSR (validation R2 = 0.73), OPA-CARS-PLSR (validation R2 = 0.69), OPAPLSR (validation R2 = 0.66), and DC-PLSR (validation R2 = 0.64). The better performance of PI-CNN over DCCNN demonstrates the necessity of using different sizes of convolutional kernels before feeding into the fully connected layers in the CNN network for fusing vis-NIR and MIR spectral data. The deep-learning fusion method based on PI-CNN can be considered an efficient tool for integrating data from multiple sensors for estimating soil properties in the field of soil spectral modeling.
- 相关文献
作者其他论文 更多>>
-
Astragalus Polysaccharide Modulates the Gut Microbiota and Metabolites of Patients with Type 2 Diabetes in an In Vitro Fermentation Model
作者:Zhang, Xin;Jia, Lina;Ma, Qian;Zhang, Tongcun;Qi, Wei;Wang, Nan;Zhang, Xin;Jia, Lina;Ma, Qian;Zhang, Tongcun;Qi, Wei;Wang, Nan;Zhang, Xiaoyuan;Chen, Mian;Liu, Fei;Jia, Weiguo;Zhu, Liying
关键词:Astragalus polysaccharide; type 2 diabetes mellitus; fecal microbiota; metabolites
-
Using process-oriented model output to enhance machine learning-based soil organic carbon prediction in space and time
作者:Zhang, Lei;Yang, Lin;Zhang, Lei;Heuvelink, Gerard B. M.;Mulder, Vera L.;Heuvelink, Gerard B. M.;Chen, Songchao;Deng, Xunfei;Yang, Lin
关键词:Hybrid modelling; Mechanistic knowledge-guided machine; learning; RothC; Random forest; Digital soil mapping; Soil carbon dynamics
-
Near-infrared light-heatable platinum nanozyme for synergistic bacterial inhibition
作者:Li, Xue;Sun, Suling;Hu, Guixian;Li, Xue;Zhu, Weisheng;Wang, Nan;Gao, Xiangfan;Cao, Mengting;Zhang, Zhijun;Zhou, Yuan;Zhou, Yuan;Zhang, Zhijun
关键词:nanozyme; metal-organic framework; photothermal effect; reactive oxygen species; bacterial inhibition
-
Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications
作者:Qi, Qianhui;Wang, Wei;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Qi, Qianhui;Yu, Changmin;Wang, Nan;Zhang, Yu;Li, Xue;Li, Lin
关键词:Biodegradation; Silica nanoparticles; Stimuli -responsive; Multiple frameworks; Biological applications
-
Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins
作者:Kong, Xiaoyue;Liu, Xingquan;Kong, Xiaoyue;Wang, Wei;Bai, Kaiwen;Wu, Yi;Qi, Qianhui;Zhong, Yizhi;Xie, Junran;Wang, Nan;Zhang, Yu
关键词:efficacy; mechanisms; peptides derived from animal proteins; SARS-CoV-2; computer-aided design methods; drug delivery strategies
-
Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation
作者:Hong, Yongsheng;Hong, Yongsheng;Sanderman, Jonathan;Hengl, Tomislav;Chen, Songchao;Wang, Nan;Xue, Jie;Shi, Zhou;Zhuo, Zhiqing;Peng, Jie;Li, Shuo;Chen, Yiyun;Liu, Yaolin;Mouazen, Abdul Mounem;Mouazen, Abdul Mounem
关键词:Soil monitoring; Mid-infrared spectroscopy; Soil spectral library; Fractional-order derivative; Deep learning
-
Improving model performance in mapping cropland soil organic matter using time-series remote sensing data
作者:Zhang, Xianglin;Chen, Songchao;Wang, Zheng;Chen, Xueyao;Xiao, Yi;Shi, Zhou;Xue, Jie;Chen, Songchao;Zhuo, Zhiqing;Shi, Zhou
关键词:cropland; soil organic matter; digital soil mapping; machine learning; feature selection; model averaging