Time effects of rice straw and engineered bacteria on reduction of exogenous Cu mobility in three typical Chinese soils
文献类型: 外文期刊
作者: Shi, Hanzhi 1 ; Wen, Dian 1 ; Huang, Yongdong 1 ; Xu, Shoujun 1 ; Deng, Tenghaobo 1 ; LI, Furong 1 ; Wu, Zhichao 1 ; Wang, Xu 1 ; Zhao, Peihua 1 ; Wang, Fuhua 1 ; DU, Ruiying 1 ;
作者机构: 1.Guangdong Acad Agr Sci, Inst Qual Stand & Monitoring Technol Agro Prod, Guangzhou 510640, Peoples R China
2.Minist Agr & Rural Affairs, Key Lab Testing & Evaluat Agro Prod Safety & Qual, Guangzhou 510640, Peoples R China
3.Guangdong Prov Key Lab Qual & Safety Risk Assessme, Guangzhou 510640, Peoples R China
关键词: aging; Cu distribution; mobility factor; sequential extraction; soil incubation
期刊名称:PEDOSPHERE ( 影响因子:5.514; 五年影响因子:6.039 )
ISSN: 1002-0160
年卷期: 2022 年 32 卷 5 期
页码:
收录情况: SCI
摘要: Globally, copper (Cu) accumulation in soils is a major environmental concern. Agricultural organic waste and some bacterial species can readily absorb metals in an eco-friendly manner, and thus are commonly used in metal-contaminated soil remediation. This study investigates the change in Cu fractions during the aging process and the time effects of rice straw (RS) and engineered bacteria (EB) (Pseudomonas putida X4/pIME) on reduction of Cu mobility. Three typical Chinese soils (red, cinnamon, and black soils) were incubated with RS or RS + EB in the presence of exogenous Cu for 24 months. The soil physicochemical properties, reactive soil components, Cu fractions, and Cu mobility were determined over time. The Cu mobility factor (MF) values were the lowest in the black soil (6.4-9.2) because of its high organic carbon and clay contents. The additions of both RS and RS + EB accelerated Cu stabilization during the aging process in all three soils. The Cu MF values decreased with time during the initial 20 months; however, the MF values increased thereafter in all soils, which might be due to the reduction of humic substances and amorphous iron oxides and the increase in iron oxides complexed on the organic matter. The reduction rates of Cu MF were similar after 16, 24, and more than 24 months in the red, cinnamon, and black soils, respectively, indicating that RS and RS + EB could limit Cu mobility at different times in various soils. The RS treatment showed the greatest efficiency in reducing Cu mobility in the red, cinnamon, and black soils after 12, 12, and 8 months of incubation, respectively. The RS + EB treatment was more efficient than the RS treatment in the red soil during the initial 8 months of the incubation period. Our study provides theoretical support for Cu risk assessments and RS supplementation for Cu remediation in different soils.
- 相关文献
作者其他论文 更多>>
-
pOsHAK1:OsSUT1 Promotes Sugar Transport and Enhances Drought Tolerance in Rice
作者:Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu
关键词:rice; drought tolerance; sugar transport; inducible promoter
-
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus
作者:Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu
关键词:Aspergillus flavus; aflatoxin biosynthesis; branched-chain amino acids; AflaILVB/G/I; AflaILVD; fungal secondary metabolites
-
Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes
作者:Geng, Qianqian;Zou, Liang;Guo, Mengmeng;Li, Fengling;Qin, Hanlin;Tan, Zhijun;Geng, Qianqian;Liu, Xiangxiang;Wang, Xu;Zou, Liang;Liu, Hong;Wang, Xu;Tan, Zhijun
关键词:Perfluoroalkyl acids; Brominated flame retardant; Dissolved organic matter; Bioconcentration; Mussel; Co-exposure
-
Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome
作者:Han, Chuang;Cheng, Qin;Xie, Jiatao;Tang, Yanni;Zhang, Huan;Hu, Chengxiao;Zhao, Xiaohu;Han, Chuang;Du, Xiaoping;Zhao, Xiaohu;Liang, Lianming;Fan, Guocheng;Wang, Xu
关键词:Microbial diversity; oilseed rape; rhizosphere beneficial bacteria; Sclerotinia sclerotiorum; selenium; synthetic community
-
Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s
作者:Zhang, Hao;He, Xuyou;Munyaneza, Venuste;Zhang, Guangzeng;Ye, Xiangsheng;Wang, Chuang;Shi, Lei;Ding, Guangda;Wang, Xu
关键词:Brassica napus; Purple acid phosphatases; Expression profile; BnaPAP10as; Root-associated APase activity; Phosphate homeostasis
-
The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain
作者:Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang
关键词:rice; arsenic; molecular mechanism; agronomic practices; biomolecular technology
-
Fe(III) transporter OsYSL15 may play a key role in the uptake of Cr(III) in rice (Oryza sativa L.)
作者:Li, Jingjing;Chen, Wenzhen;Xu, Kairan;Xie, Weipeng;Qi, Hua;Qiu, Rongliang;Tang, Yetao;Wang, Shizhong;Morel, Jean-Louis;Qiu, Rongliang;Deng, Tenghaobo;Morel, Jean-Louis;Qiu, Rongliang
关键词:Cr(III); Uptake; Rice; Fe(III); YSL