您好,欢迎访问中国水产科学研究院 机构知识库!

Single atom Z-scheme heterostructure catalysts of photosensitive metal-organic nanorings and graphite-C3N4 for visible light-driven hydrogen production

文献类型: 外文期刊

作者: Hou, Chao-Ping 1 ; Liu, Yang 1 ; Liu, Jia-Xin 1 ; Li, Xin-Ao 1 ; Liang, Zi-Zhan 1 ; Tan, Li-Lin 3 ; Liu, Jun-Min 1 ;

作者机构: 1.Sun Yat Sen Univ, Sch Mat Sci & Engn, Key Lab Low Carbon Chem & Energy Conservat Guangdo, Guangzhou 510275, Peoples R China

2.Chinese Acad Fishery Sci, South China Sea Fisheries Res Inst, Guangzhou 510300, Peoples R China

3.Chem & Chem Engn Guangdong Lab, Shantou 515031, Peoples R China

关键词: Metal-organic nanoring; Z-scheme heterojunction; Single-atom catalyst; Photocatalytic hydrogen evolution

期刊名称:JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY ( 影响因子:4.7; 五年影响因子:4.2 )

ISSN: 1010-6030

年卷期: 2025 年 462 卷

页码:

收录情况: SCI

摘要: The use of Z-scheme heterojunction photocatalysts is a favorable way to convert solar energy into hydrogen energy. Here, a PdL-type metal-organic molecular ring (TPA-CH3-Cyclo) is designed and synthesized by assembling catalytic Pd2+ centers with photosensitive ligands (TPA-CH3-Py), and then TPA-CH3-Cyclo is combined with g-C3N4 to obtain a direct Z-scheme heterojunction g-C3N4/TPA-CH3-Cyclo. The optimized 3.0 wt% gC3N4/TPA-CH3-Cyclo displays a high H2 yield rate of 20mmol g- 1h- 1, superior to g-C3N4, Pd/g-C3N4, TPA-CH3Cyclo, and TPA-CH3-Py/Pd/g-C3N4, and also shows good durability with a corresponding turnover number (TONPd) of 80,183 within 28 h. A significant increase in photocatalytic activity can be achieved by improving the carrier migration rate, light absorption efficiency, and direct contact interface between two Z-heterojunction components, and single atom Pd catalysis. Therefore, the Z-scheme photocatalyst consisting of metal-organic rings and g-C3N4 can act as a high-efficiency heterojunction system for hydrogen production using solar energy. Abbreviations: FL, fluorescence; SPMD, supramolecular photochemical molecular device; PET, photoinduced electron transfer; PHE, photocatalytic H2 evolution; ESI-MS, electrospray ionization mass spectrum; SEM, scanning electron microscope; TEM, transmission electron microscopy; HRTEM, high-resolution transmission electron microscopy; EDX, energy-dispersive X-ray spectroscopy; BET, Brunauer-Emmett-Teller; FT-IR, the Fourier transform infrared spectrum; TON, the accumulated turnover number; TOF, turnover frequency; XPS, the X-ray photoelectron spectroscopy; EIS, electrochemical impedance spectrum; NHE, normal hydrogen electrode; CB, the conduct band; VB, the valence band; CV, the cyclic voltammetry; HOMO, the highest occupied molecular orbital; LUMO, the lowest unoccupied molecular orbital; Eox, the onset oxidation potentials; Ered, the reduction potentials; E0-0, the transition energy; PL, the steady-state photoluminescence spectrum; AQYs, apparent quantum yields.

  • 相关文献
作者其他论文 更多>>