Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase
文献类型: 外文期刊
作者: Ma, Xiaoyu 1 ; Gao, Ming 1 ; Wang, Nuohan 1 ; Liu, Shuo 1 ; Wang, Qunhui 1 ; Sun, Xiaohong 3 ;
作者机构: 1.Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Dept Environm Sci & Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
2.Univ Sci & Technol Beijing, Beijing Key Lab Resource Oriented Treatment Ind P, 30 Xueyuan Rd, Beijing 100083, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Beijing Agrobiotechnol Res Ctr, Beijing 100097, Peoples R China
关键词: Lactic acid; Food waste; Spent mushroom substance; Aspergillus niger cellulase; Co-fermentation
期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )
ISSN: 0960-8524
年卷期: 2021 年 337 卷
页码:
收录情况: SCI
摘要: The feasibility of co-fermentation of food waste and spent mushroom substance for lactic acid with Aspergillus niger cellulase replacing commercial cellulase was explored. In this study, Enterococcus mundtii was used in this study because it could utilize hexose and pentose. When the ratio of food waste and spent mushroom substance was 1:2, lactic acid concentration was 39.22 g/L, 39.28% higher than the weighted average of experimental lactic acid concentrations, indicating that the co-fermentation had positive synergistic effects. Results showed 92.62% of sugars of pretreated spent mushroom substance was released by Aspergillus niger cellulase. Moreover, when Aspergillus niger cellulase was added into the lactic acid fermentation system at 24 h, lactic acid concentration reached 48.72 g/L, which was 22.97% higher than that of the control group with commercial cellulase, because of the disappearance of Veillonella and Saccharomycetales with the Aspergillus niger cellulase addition, thus making more substrates converted into lactic acid.
- 相关文献
作者其他论文 更多>>
-
Metabolic mechanism of thermal pretreatment combined with ethanol pre-fermentation to enhance anaerobic digestion of food waste: A comprehensive analysis of key enzyme-encoding genes
作者:Zhang, Shuang;Zhao, Pan;Gao, Ming;Wu, Chuanfu;Wang, Qunhui;Gao, Ming;Wu, Chuanfu;Wang, Qunhui;Sun, Xiaohong;Wang, Qunhui
关键词:Anaerobic fermentation; Pretreatment; Microbial community; Metabolic pathways; Enzyme-encoding genes
-
Research progress for co-production ethanol and biobased products
作者:Li, Yongsheng;Sun, Haishu;Zhang, Yuanchun;Wang, Xiaona;Gao, Ming;Wang, Qunhui;Sun, Xiaohong;Gao, Ming;Wang, Qunhui
关键词:Ethanol; Co-production; Biobased chemicals; Bioenergy; Microbial fermentation
-
Optimizing ethanol pre-fermentation of food waste to enhance batch anaerobic digestion: Regulation of the acidification pathway
作者:Zhang, Shuang;Zhao, Pan;Wu, Chuanfu;Gao, Ming;Wang, Qunhui;Wu, Chuanfu;Gao, Ming;Wang, Qunhui;Sun, Xiaohong;Wang, Qunhui
关键词:Anaerobic fermentation; Microbial community; Acidogenesis; Acetogenesis; Methanogenesis
-
Impact of biochar on ammonia emission mitigation and enhanced humification in the bio-drying process of food waste digestate
作者:Xu, Mingyue;Wang, Xiaona;Chen, Enmiao;Sun, Haishu;Li, Yongsheng;Wang, Qunhui;Wang, Qunhui;Sun, Xiaohong;Xu, Mingyue
关键词:Food waste digestate; Bio-drying; Biochar; Bacterial community
-
Synthesis of Poly(Lactic Acid) from Ammonium Lactate Fermentation Broth of Food Waste
作者:Zhang, Bingxin;Guo, Yan;Gao, Ming;Wu, Chuanfu;Wang, Xiaona;Wang, Qunhui;Sun, Xiaohong
关键词:Food waste; Ammonium lactate fermentation broth; Stannous chloride modified resin; Butyl lactate; Lactide; Poly(lactic acid)
-
Ethanol-type anaerobic digestion enhanced methanogenic performance by stimulating direct interspecies electron transfer and interspecies hydrogen transfer
作者:Zhang, Shuang;Ren, Yuanyuan;Zhao, Pan;Wang, Xiaona;Wang, Qunhui;Ren, Yuanyuan;Wang, Xiaona;Wang, Qunhui;Sun, Xiaohong
关键词:Methane production; E-pili; Ethanol-type fermentation; Syntrophic metabolism; Hydrogenase genes
-
Hemicellulose recovery and lignin removal through acid-alkali union pretreatment to improve the lactic acid production from garden garbage
作者:Zhu, Wenbin;Zhang, Yuanchun;Ma, Xiaoyu;Li, Yuan;Liu, Shuo;Gao, Ming;Wang, Qunhui;Gao, Ming;Wang, Qunhui;Sun, Xiaohong
关键词:Garden garbage; Acid-alkali union pretreatment; Hemicellulose recovery; Lactic acid; Byproduct yield



