A Subunit of the COP9 Signalosome, MoCsn6, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Rice Blast Fungus
文献类型: 外文期刊
作者: Shen, Zi-Fang 1 ; Li, Lin 2 ; Wang, Jing-Yi 1 ; Zhang, Yun-Ran 1 ; Wang, Zi-He 1 ; Liang, Shuang 2 ; Zhu, Xue-Ming 2 ; Lu, Jian-Ping 3 ; Lin, Fu-Cheng 1 ; Liu, Xiao-Hong 1 ;
作者机构: 1.Zhejiang Univ, Inst Biotechnol, State Key Lab Managing Biot & Chem Treats Qual & S, Hangzhou, Peoples R China
2.Zhejiang Acad Agr Sci, Inst Plant Protect & Microbiol, State Key Lab Managing Biot & Chem Treats Qual & S, Hangzhou, Peoples R China
3.Zhejiang Univ, Coll Life Sci, Hangzhou, Peoples R China
关键词: COP9 signalosome; MoCsn6; autophagy; development; rice blast fungus
期刊名称:MICROBIOLOGY SPECTRUM ( 影响因子:9.043; 五年影响因子:8.113 )
ISSN: 2165-0497
年卷期:
页码:
收录情况: SCI
摘要: Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, affecting various development and signaling processes. To date, the biological functions of the COP9 signalosome and its subunits have not been determined in Magnaporthe oryzae. In this study, we characterized the CSN in M. oryzae (which we named MoCsn6) and analyzed its biological functions. MoCsn6 is involved in fungal development, autophagy, and plant pathogenicity. Compared with the wild-type strain 70-15, Delta Mocsn6 mutants showed a significantly reduced growth rate, sporulation rate, and germ tube germination rate. Pathogenicity assays showed that the Delta Mocsn6 mutants did not cause or significantly reduced the number of disease spots on isolated barley leaves. After the MoCSN6 gene was complemented into the Delta Mocsn6 mutant, vegetative growth, sporulation, and pathogenicity were restored. The Osm1 and Pmk1 phosphorylation pathways were also disrupted in the Delta Mocsn6 mutants. Furthermore, we found that MoCsn6 participates in the autophagy pathway by interacting with the autophagy core protein MoAtg6 and regulating its ubiquitination level. Deletion of MoCSN6 resulted in rapid lipidation of MoAtg8 and degradation of the autophagic marker protein green fluorescent protein-tagged MoAtg8 under nutrient and starvation conditions, suggesting that MoCsn6 negatively regulates autophagic activity. Taken together, our results demonstrate that MoCsn6 plays a crucial role in regulating fungal development, pathogenicity, and autophagy in M. oryzae.IMPORTANCE Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) has been extensively studied in ubiquitin pathways, but its regulation of autophagy has rarely been reported in plant-pathogenic fungi. Investigations on the relationship between CSN and autophagy will deepen our understanding of the pathogenic mechanism of M. oryzae and provide new insights into the development of new drug targets to control fungal diseases. In this study, the important function of Csn6 in the autophagy regulation pathway and its impact on the pathogenicity of M. oryzae were determined. We showed that Csn6 manages autophagy by interacting with the autophagy core protein Atg6 and regulating its ubiquitination level. Furthermore, future investigations that explore the function of CSN will deepen our understanding of autophagy mechanisms in rice blast fungus.
- 相关文献
作者其他论文 更多>>
-
A rho-type GTPase activating protein affects the growth and development of Cordyceps cicadae
作者:Li, Xueqian;Zou, Yu;Wang, Hongkai;Shrivastava, Neeraj;Bao, Jiandong;Lin, Fu-Cheng
关键词:Cordyceps cicadae; Rho-type GTPase activating protein; Growth and development; Active components
-
Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications
作者:Qi, Qianhui;Wang, Wei;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Qi, Qianhui;Yu, Changmin;Wang, Nan;Zhang, Yu;Li, Xue;Li, Lin
关键词:Biodegradation; Silica nanoparticles; Stimuli -responsive; Multiple frameworks; Biological applications
-
Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi
作者:Zhang, Yunran;Wu, Minghua;Liu, Mengyu;Liu, Xiaohong;Lin, Fucheng;Zhang, Yunran;Liang, Shuang;Zhu, Xueming;Lin, Fucheng;Wei, Yunyun
关键词:Magnaporthe oryzae; autophagy; ubiquitination; pathogenicity; regulation mechanism; phytopathoogenic fungi
-
Roles of CcDFR and CcOMT9 in the cyanidin biosynthesis and development of Cordyceps cicadae
作者:Zeng, Zixuan;Zou, Yu;Wang, Hongkai;Cai, Weiming;Lin, Fu-Cheng
关键词:Cordyceps cicadae; cyanidin-3-O-glucoside; growth and development; bioactive substance; gene function
-
Genome-Wide Identification and Characterization of Effector Candidates with Conserved Motif in Falciphora oryzae
作者:Dai, Mengdi;Zhu, Xueming;Li, Lin;Lin, Fucheng;Dai, Mengdi;Ye, Ziran;Tan, Xiangfeng;Kong, Dedong;Su, Zhenzhu;Liu, Xiaohong;Lin, Fucheng
关键词:genome-wide; effector; conserved motif; endophyte
-
A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae
作者:Wang, Lei;Zhang, Xiaozhi;Lin, Fucheng;Zhu, Xueming;Li, Lin;Bao, Jiandong;Lin, Fucheng;Zhu, Xueming;Lin, Fucheng
关键词:Magnaporthe oryzae; MoDES1; Sphingolipid; Pathogenic fungi; Lipid homeostasis; PM tension
-
Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae
作者:Shen, Zi-Fang;Li, Lin;Zhu, Xue-Ming;Lin, Fu-Cheng;Shen, Zi-Fang;Wang, Jing-Yi;Liao, Jian;Zhang, Yun-Ran;Wang, Zi-He;Liu, Xiao-Hong;Lin, Fu-Cheng;Lu, Jian-Ping
关键词:COP9 signalosome; Csn5; Autophagy; Ubiquitination; Pathogenicity; Rice blast fungus