Estimation of Leaf Nitrogen Content of Winter Wheat Based on Akaike's Information Criterion
文献类型: 外文期刊
作者: Pei, Haojie 1 ; Feng, Haikuan 1 ; Yang, Fuqin 1 ; Li, Zhenhai 1 ; Yang, Guijun 1 ; Niu, Qinglin 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr PR China, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
4.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Henan, Peoples R China
5.Henan Inst Engn, Coll Civil Engn, Zhengzhou 451191, Peoples R China
关键词: Leaf nitrogen content; Akaike's Information Criterion; Variable importance for projection; Partial least squares; Vegetation index
期刊名称:COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, CCTA 2017, PT II
ISSN: 1868-4238
年卷期: 2019 年 546 卷
页码:
收录情况: SCI
摘要: Nitrogen is one of the important indices for evaluation of crop growth and output quality. At present, there are a lot of researches on the estimation of crop nitrogen content, but most of the studies do not consider whether the model established by vegetation index and crop nitrogen content is the best. The purpose of this study was to estimate the nitrogen content of wheat leaves and to establish a method and the optimal model for monitoring nitrogen content in wheat leaves. Spectral reflectance of leaves and concurrent leaf nitrogen content parameters of samples were acquired in during 2013 and 2014 wheat growth season, in Beijing Academy of Agriculture and Forestry Sciences. 17 vegetation indices related to nitrogen content were chosen, and the relationship between related vegetation indices and leaf nitrogen content were built for screening vegetation indices with variable importance projection (VIP). Choosing first 10 different vegetation indices after ranking with VIP value as the independent variable for estimating nitrogen content of leaf in wheat. And the number of vegetation indices was gradually increased from top 4 to 10. The leaf nitrogen content estimation model with different vegetation indices can be built using the integrated model of variable importance projection (VIP) - partial least squares (PLS). At the same time, Akaike's Information Criterion (AIC) value was calculated in different estimation model, and the AIC value of 7 different estimation model was compared. Then the optimal model with 5 vegetation indices was selected, which AIC value is the lowest. The optimal model was validated by leave one out cross-validation method. The result, (1) the comprehensive interpretation ability of the first 10 spectral indices on the nitrogen content of winter wheat leaves was PSSRc, GMI-2, SR705, RI-half, ZM, GMI-1, PSSRb, RI-3 dB, VOGc and CIred edge. (2) The optimal model with 5 vegetation indices was selected from 7 models. (3) The decision coefficient (R-2) and root-mean-square error (RMSE) of the optimal model respectively were 0.73 and 0.33. The R-2 and RMSE of wheat by validating were 0.73 and 0.33, respectively. The study showed: (1) The VIP-PLS model has higher ability to estimate the nitrogen content of leaf in wheat, which laying an important foundation for improving the precision of forecasting winter wheat leaf nitrogen content with remote sensing. (2) The AIC method can be used to select the optimal model, and the selected model has the higher predictive ability. And the optimal estimation model of wheat LNC can be obtained based on AIC.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



