Fusion of optical and SAR images based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions
文献类型: 外文期刊
作者: Li, Jingbo 2 ; Li, Changchun 3 ; Xu, Weimeng 2 ; Feng, Haikuan 2 ; Zhao, Fa 2 ; Long, Huiling 2 ; Meng, Yang 2 ; Chen, Weinan 3 ; Yang, Hao 2 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Henan Polytech Univ, Sch Surveying & Mapping Land Informat Engn, Jiaozuo 454000, Peoples R China
4.Changan Univ, Sch Geol Engn & Surveying & Mapping, Xian 710054, Peoples R China
关键词: Vegetation Monitoring; Time series; Deep learning; Transformer; SAR data; Optical data; NDVI
期刊名称:INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION ( 影响因子:7.672; 五年影响因子:7.332 )
ISSN: 1569-8432
年卷期: 2022 年 112 卷
页码:
收录情况: SCI
摘要: The normalized difference vegetation index (NDVI) is crucial to many sustainable agricultural practices such as vegetation monitoring and health evaluation. However, optical remote sensing data often suffer from a large amount of missing information due to sensor failures and harsh atmospheric conditions. The synthetic aperture radar (SAR) offers a new approach to filling in missing optical data based on its excessive revisit density and its potential to image without interference from clouds and rain. Due to the difference in imaging mechanisms between SAR and optical sensors, it is very difficult to fuse the data. This paper developed an advanced deep learning Spatio-temporal fusion method, i.e., Transformer Temporal-spatial Model (TTSM), to synergize the SAR and optical time-series to reconstruct vegetation NDVI time series in cloudy regions. The proposed multi-head attention and end-to-end architecture achieved satisfactory accuracy (R-2 greater than 0.88), outperforming the existing deep learning solutions. Extensive experiments were carried out to evaluate the TTSM method on large-scale areas (the spatial scale of megapixels) in northeast China with the main vegetation types of crops and forests. The R-2, SSIM, RMSE, NRMSE, and MAE of our prediction results were 0.88, 0.80, 0.06, 0.16, and 0.05, respectively. The influence of training sample size was investigated through a transfer learning study, and the result indicated that the model had good generalizability. Overall, our proposed method can fill in the gap of optical data at an extensive regional scope over the vegetated area using SAR.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response