Fusion of optical and SAR images based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions
文献类型: 外文期刊
作者: Li, Jingbo 2 ; Li, Changchun 3 ; Xu, Weimeng 2 ; Feng, Haikuan 2 ; Zhao, Fa 2 ; Long, Huiling 2 ; Meng, Yang 2 ; Chen, Weinan 3 ; Yang, Hao 2 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Henan Polytech Univ, Sch Surveying & Mapping Land Informat Engn, Jiaozuo 454000, Peoples R China
4.Changan Univ, Sch Geol Engn & Surveying & Mapping, Xian 710054, Peoples R China
关键词: Vegetation Monitoring; Time series; Deep learning; Transformer; SAR data; Optical data; NDVI
期刊名称:INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION ( 影响因子:7.672; 五年影响因子:7.332 )
ISSN: 1569-8432
年卷期: 2022 年 112 卷
页码:
收录情况: SCI
摘要: The normalized difference vegetation index (NDVI) is crucial to many sustainable agricultural practices such as vegetation monitoring and health evaluation. However, optical remote sensing data often suffer from a large amount of missing information due to sensor failures and harsh atmospheric conditions. The synthetic aperture radar (SAR) offers a new approach to filling in missing optical data based on its excessive revisit density and its potential to image without interference from clouds and rain. Due to the difference in imaging mechanisms between SAR and optical sensors, it is very difficult to fuse the data. This paper developed an advanced deep learning Spatio-temporal fusion method, i.e., Transformer Temporal-spatial Model (TTSM), to synergize the SAR and optical time-series to reconstruct vegetation NDVI time series in cloudy regions. The proposed multi-head attention and end-to-end architecture achieved satisfactory accuracy (R-2 greater than 0.88), outperforming the existing deep learning solutions. Extensive experiments were carried out to evaluate the TTSM method on large-scale areas (the spatial scale of megapixels) in northeast China with the main vegetation types of crops and forests. The R-2, SSIM, RMSE, NRMSE, and MAE of our prediction results were 0.88, 0.80, 0.06, 0.16, and 0.05, respectively. The influence of training sample size was investigated through a transfer learning study, and the result indicated that the model had good generalizability. Overall, our proposed method can fill in the gap of optical data at an extensive regional scope over the vegetated area using SAR.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



