In-silico genome wide analysis of Mitogen activated protein kinase kinase kinase gene family in C. sinensis
文献类型: 外文期刊
作者: Paul, Abhirup 1 ; Srivastava, Anurag P. 2 ; Subrahmanya, Shreya 3 ; Shen, Guoxin 4 ; Mishra, Neelam 3 ;
作者机构: 1.REVA Univ, Dept Biochem, Bangalore, Karnataka, India
2.Garden City Univ, Dept Life Sci, Bangalore, Karnataka, India
3.St Josephs Coll Autonomous, Dept Bot, Bangalore, Karnataka, India
4.Zhejiang Acad Agr Sci, Sericultural Res Inst, Hangzhou, Peoples R China
期刊名称:PLOS ONE ( 影响因子:3.752; 五年影响因子:4.069 )
ISSN: 1932-6203
年卷期: 2021 年 16 卷 11 期
页码:
收录情况: SCI
摘要: Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.
- 相关文献
作者其他论文 更多>>
-
Genome Wide Identification, Expression Profiles and Regulatory Network Analysis of SOS Group of Genes in Camellia Sinensis
作者:Li, Wang;Lin, Chen;Shen, Guoxin;Bhattacharjee, Surjit;Mishra, Neelam
关键词:C. sinensis; SOS; Cis-acting elements; Expression pattern; Abiotic stress
-
Genome-wide identification of PP2A gene family in Camellia sinensis reveals the potential role of CsPP2A-TON2/FASS1 in abiotic stress
作者:Bhattacharjee, Surjit;Mishra, Neelam;Miao, Ye;Lu, Honglin;Shen, Guoxin
关键词:Protein phosphatases; Genome-wide search; qRT-PCR; Stress-responsiveness; C. sinensis.; Drought stress; Salt stress; PP2A gene family
-
Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance
作者:Sugumar, Tharanya;Smith, Jennifer;Zhang, Hong;Shen, Guoxin
关键词:abiotic stress; drought; food security; heat; salinity; climate change
-
Sciadonic acid attenuates high-fat diet-induced bone metabolism disorders in mice
作者:Yao, Shiwei;Xiang, Xingwei;Yao, Shiwei;Lu, Hongling;Jiang, Qihong;Jiang, Chenkai;Hu, Wenjun;Shen, Guoxin;Chen, Lin;Yao, Shiwei;Xiang, Xingwei;Zhou, Tianhuan;Du, Qun;Li, Mingqian;Tan, Chin Ping;Tan, Chin Ping;Feng, Yongcai
关键词:
-
Hypoglycemic mechanism of Tegillarca granosa polysaccharides on type 2 diabetic mice by altering gut microbiota and regulating the PI3K-akt signaling pathwaye
作者:Jiang, Qihong;Wang, Rui;Liu, Shulai;Xiang, Xingwei;Jiang, Qihong;Wang, Rui;Liu, Shulai;Xiang, Xingwei;Jiang, Qihong;Wang, Rui;Liu, Shulai;Xiang, Xingwei;Chen, Lin;Shen, Guoxin;Chen, Yin;Deng, Shanggui
关键词:Tegillarca granosa polysaccharide; Type 2 diabetes mellitus; Glycolipid metabolism; PI3K/Akt signaling pathway
-
Exploring the Regulatory Effect of Tegillarca granosa Polysaccharide on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Based on Intestinal Flora
作者:Yang, Xingwen;Yao, Shiwei;Jiang, Qihong;Chen, Hui;Liu, Shulai;Xiang, Xingwei;Yang, Xingwen;Yao, Shiwei;Jiang, Qihong;Chen, Hui;Liu, Shulai;Xiang, Xingwei;Yang, Xingwen;Yao, Shiwei;Jiang, Qihong;Chen, Hui;Liu, Shulai;Xiang, Xingwei;Shen, Guoxin;Chen, Lin
关键词:AMPK signaling; high-fat diet; intestinal flora; lipid metabolism; non-alcoholic fatty liver; Tegillarca granosa polysaccharide
-
Sciadonic acid ameliorates cyclophosphamide-induced immunosuppression by modulating the immune response and altering the gut microbiota
作者:Chen, Lin;Jiang, Qihong;Jiang, Chenkai;Lu, Hongling;Hu, Wenjun;Yu, Shaofang;Shen, Guoxin;Yao, Shiwei;Xiang, Xingwei;Li, Mingqian;Feng, Yongcai;Tan, Chin Ping
关键词:cyclophosphamide; gut microbiota; immunomodulatory activity; intestinal barrier; sciadonic acid



