A deep learning-based approach for fully automated segmentation and quantitative analysis of muscle fibers in pig skeletal muscle
文献类型: 外文期刊
作者: Yao, Zekai 1 ; Wo, Jingjie 4 ; Zheng, Enqin 2 ; Yang, Jie 2 ; Li, Hao 1 ; Li, Xinxin 1 ; Li, Jianhao 1 ; Luo, Yizhi 1 ; Wang, Ting 2 ; Fan, Zhenfei 2 ; Zhan, Yuexin 2 ; Yang, Yingshan 2 ; Wu, Zhenfang 2 ; Yin, Ling 4 ; Meng, Fanming 1 ;
作者机构: 1.Guangdong Acad Agr Sci, Inst Anim Sci, State Key Lab Swine & Poultry Breeding Ind, Guangdong Key Lab Anim Breeding & Nutr, Guangzhou 510640, Peoples R China
2.South China Agr Univ, Coll Anim Sci, Guangzhou 510642, Peoples R China
3.South China Agr Univ, Natl Engn Res Ctr Breeding Swine Ind, Guangzhou 510642, Peoples R China
4.South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
5.Yunfu Subctr Guangdong Lab Lingnan Modern Agr, Yunfu 527400, Peoples R China
6.Guangdong Acad Agr Sci, Inst Facil Agr, Guangzhou 510640, Peoples R China
7.South China Agr Univ, Guangdong Prov Key Lab Agroanim Genom & Mol Breedi, Guangzhou 510642, Peoples R China
关键词: Pigs; Skeletal muscle; Deep learning; Image segmentation; Quantitative analysis
期刊名称:MEAT SCIENCE ( 影响因子:7.1; 五年影响因子:6.6 )
ISSN: 0309-1740
年卷期: 2024 年 213 卷
页码:
收录情况: SCI
摘要: Muscle fiber properties exert a significant influence on pork quality, with cross-sectional area (CSA) being a crucial parameter closely associated with various meat quality indicators, such as shear force. Effectively identifying and segmenting muscle fibers in a robust manner constitutes a vital initial step in determining CSA. This step is highly intricate and time-consuming, necessitating an accurate and automated analytical approach. One limitation of existing methods is their tendency to perform well on high signal-to-noise ratio images of intact, healthy muscle fibers but their lack of validation on more complex image datasets featuring significant morphological changes, such as the presence of ice crystals. In this study, we undertake the fully automatic segmentation of muscle fiber microscopic images stained with myosin adenosine triphosphate (mATPase) activity using a deep learning architecture known as SOLOv2. Our objective is to efficiently derive accurate measurements of muscle fiber size and distribution. Tests conducted on actual images demonstrate that our method adeptly handles the intricate task of muscle fiber segmentation, yielding quantitative results amenable to statistical analysis and displaying reliability comparable to manual analysis.
- 相关文献
作者其他论文 更多>>
-
TLR4 signalling in ischemia/reperfusion injury: a promising target for linking inflammation, oxidative stress and programmed cell death to improve organ transplantation outcomes
作者:Wang, Sutian;Huang, Qiuyan;Meng, Fanming;Zhang, Kunli;Deng, Shoulong;Deng, Shoulong
关键词:toll-like receptor 4; ischemia/reperfusion injury; organ transplantation; inflammation; oxidative stress; programmed cell death
-
Multi-omic characterization of allele-specific regulatory variation in hybrid pigs
作者:Quan, Jianping;Wang, Xingwang;Cai, Gengyuan;Ding, Rongrong;Zhuang, Zhanwei;Zhou, Shenping;Ruan, Donglin;Wu, Jiajin;Zheng, Enqin;Zhang, Zebin;Liu, Langqing;Meng, Fanming;Wu, Jie;Xu, Cineng;Qiu, Yibin;Wang, Shiyuan;Lin, Meng;Li, Shaoyun;Ye, Yong;Zhou, Fuchen;Lin, Danyang;Li, Xuehua;Deng, Shaoxiong;Zhang, Yuling;Yao, Zekai;Yang, Yingshan;Liu, Yiyi;Zhan, Yuexin;Zhang, Jiaming;Ma, Fucai;Yang, Jifei;Chen, Qiaoer;Yang, Jisheng;Gu, Ting;Huang, Sixiu;Xu, Zheng;Li, Zicong;Yang, Jie;Wu, Zhenfang;Quan, Jianping;Ding, Rongrong;Tan, Suxu;Huang, Wen;Quan, Jianping;Cai, Gengyuan;Wu, Jiajin;Zheng, Enqin;Zhang, Zebin;Liu, Langqing;Lin, Meng;Huang, Sixiu;Yang, Jie;Quan, Jianping;Ding, Rongrong;Ye, Jian;Dong, Linsong;Wu, Zhenfang;Yang, Ming;Gao, Xin;Liu, Zhihong;Yang, Ming;Ding, Rongrong;Ye, Jian;Dong, Linsong;Wu, Zhenfang;Wang, Xingwang;Cai, Gengyuan;Zhuang, Zhanwei;Zhou, Shenping;Ruan, Donglin;Wu, Jiajin;Zheng, Enqin;Zhang, Zebin;Liu, Langqing;Wu, Jie;Xu, Cineng;Qiu, Yibin;Wang, Shiyuan;Li, Shaoyun;Ye, Yong;Zhou, Fuchen;Lin, Danyang;Li, Xuehua;Deng, Shaoxiong;Zhang, Yuling;Yao, Zekai;Yang, Yingshan;Liu, Yiyi;Zhan, Yuexin;Zhang, Jiaming;Ma, Fucai;Yang, Jifei;Gu, Ting;Xu, Zheng;Li, Zicong;Yang, Jie;Meng, Fanming
关键词:
-
Integrative analysis of proteomics and lipidomic profiles reveal the fat deposition and meat quality in Duroc x Guangdong small spotted pig
作者:Wu, Zhuosui;Wang, Pan;Cheng, Leiyan;Li, Jianhao;Li, Linfeng;Hu, Bin;Wang, Zhonggang;Luo, Yanfeng;Yang, Linfang;Zeng, Jianhua
关键词:fat deposition; lipidomics; proteomics; metabolic pathways; Duroc x Guangdong small spotted pig
-
The vesicle trafficking gene, OsRab7, is critical for pollen development and male fertility in cytoplasmic male-sterility rice
作者:Ying, Suping;Tang, Yunting;Yang, Wei;Hu, Zhao;Huang, Ruifeng;Ding, Jie;Yi, Xiangyun;Niu, Jiawei;Chen, Zihan;Peng, Xiaojue;Liu, Wei;Wang, Ting
关键词:OsRab7; Cytoplasm male sterility; Anther development; Rice
-
Automatic Recognition and Quantification Feeding Behaviors of Nursery Pigs Using Improved YOLOV5 and Feeding Functional Area Proposals
作者:Luo, Yizhi;Luo, Haowen;Luo, Yizhi;Lu, Huazhong;Luo, Haowen;Lv, Enli;Li, Bin;Meng, Fanming;Xia, Jinjin;Lv, Enli;Zeng, Zhixiong;Meng, Fanming;Yang, Aqing
关键词:nursery pigs; feeding behavior recognition; functional area proposals; behavioral quantification; transformer
-
Protein Dynamic Landscape during Mouse Mammary Gland Development from Virgin to Pregnant, Lactating, and Involuting Stages
作者:Wang, Wenjing;Wang, Shunbo;Wang, Hao;Zheng, Enqin;Wu, Zhenfang;Li, Zicong;Wang, Wenjing;Wang, Shunbo;Wang, Hao;Zheng, Enqin;Wu, Zhenfang;Li, Zicong;Wu, Zhenfang;Li, Zicong
关键词:development; mammary gland; mouse; DIA-based quantitativeproteomics; EGF
-
The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck
作者:Li, Hao;Zhang, Xiufen;Wang, Xiaowen;Wu, Qilin;Zheng, Wenxuan;Ye, Hui;Wang, Wence;Yang, Lin;Zhu, Yongwen;Liu, Chuang;Wei, Shi;Zuo, Xin;Xiao, Wenquan;Zhu, Yongwen
关键词:growth curve; yolk sac membrane; jejunum; fatty acid; embryo