Remote Sensing Monitoring of Rice Grain Protein Content Based on a Multidimensional Euclidean Distance Method
文献类型: 外文期刊
作者: Zhang, Jie 1 ; Song, Xiaoyu 1 ; Jing, Xia 2 ; Yang, Guijun 1 ; Yang, Chenghai 3 ; Feng, Haikuan 1 ; Wang, Jiaojiao 1 ; Ming, Shikang 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100094, Peoples R China
2.Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
3.USDA ARS, Aerial Applicat Technol Res Unit, College Stn, TX 77845 USA
关键词: UAV; hyperspectral remote sensing; grain protein content; Euclidean distance; rice
期刊名称:REMOTE SENSING ( 影响因子:5.349; 五年影响因子:5.786 )
ISSN:
年卷期: 2022 年 14 卷 16 期
页码:
收录情况: SCI
摘要: Grain protein content (GPC) is an important indicator of nutritional quality of rice. In this study, nitrogen fertilization experiments were conducted to monitor GPC for high-quality Indica rice varieties Meixiangzhan 2 (V1) and Wufengyou 615 (V2) in 2019 and 2020. Three types of parameters, including photosynthetic sensitive vegetation indices (VIs), canopy leaf area index (LAI), and crop plant nitrogen accumulation (PNA), obtained from UAV hyperspectral images were used to estimate rice GPC. Two-dimensional and three-dimensional GPC indices were constructed by combining any two of the three types of parameters and all three, respectively, based on the Euclidean distance method. The R-2 and RMSE of the two-dimensional GPC index model for variety V1 at the tillering stage were 0.81 and 0.40% for modeling and 0.95 and 0.38% for validation, and 0.91 and 0.27% for modeling and 0.83 and 0.36% for validation for variety V2. The three-dimensional GPC index model for variety V1 had R-2 and RMSE of 0.86 and 0.34% for modeling and 0.78 and 0.45% for validation, and 0.97 and 0.17% for modeling and 0.96 and 0.17% for validation for variety V2 at the panicle initiation stage. At the heading stage, the R-2 and RMSE of the three-dimensional model for variety V1 were 0.92 and 0.26% for modeling and 0.91 and 0.37% for validation, and 0.96 and 0.20% for modeling and 0.99 and 0.15% for validation for variety V2. These results demonstrate that the GPC monitoring models incorporating multiple crop growth parameters based on Euclidean distance can improve GPC estimation accuracy and have the potential for field-scale GPC monitoring.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response