您好,欢迎访问中国热带农业科学院 机构知识库!

Cloning, 3D Modeling and Expression Analysis of Three Vacuolar Invertase Genes from Cassava (Manihot Esculenta Crantz)

文献类型: 外文期刊

作者: Yao, Yuan 1 ; Wu, Xiao-Hui 1 ; Geng, Meng-Ting 2 ; Li, Rui-Mei 1 ; Liu, Jiao 1 ; Hu, Xin-Wen 2 ; Guo, Jian-Chun 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Minist Agr, Key Lab Biol & Genet Resources Trop Crops, Haikou 571101, Peoples R China

2.Hainan Univ, Coll Agr, Haikou 571104, Peoples R China

关键词: cassava;expression analysis;molecular cloning;vacuolar invertase;3D modeling

期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β- fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.

  • 相关文献

[1]Genome-Wide Identification, 3D Modeling, Expression and Enzymatic Activity Analysis of Cell Wall Invertase Gene Family from Cassava (Manihot esculenta Crantz). Yao, Yuan,Geng, Meng-Ting,Liu, Jiao,Li, Rui-Mei,Guo, Jian-Chun,Wu, Xiao-Hui,Hu, Xin-Wen. 2014

[2]Cloning and Analysis of Vacuolar Invertase Gene (MeVINV2) Promoter from Cassava (Manihot Esculenta Crantz). Liu, Jiao,Hu, Yan-ping,Xia, Wen-rui,Yao, Yuan,Zhou, Yang,Fu, Shao-ping,Duan, Rui-jun,Li, Rui-mei,Guo, Jian-chun. 2014

[3]Genome-Wide Identification, Expression, and Activity Analysis of Alkaline/Neutral Invertase Gene Family from Cassava (Manihot esculenta Crantz). Yao, Yuan,Geng, Meng-Ting,Liu, Jiao,Li, Rui-Mei,Guo, Jian-Chun,Yao, Yuan,Wu, Xiao-Hui,Hu, Xin-Wen.

[4]八个木薯品种(系)储藏根采后耐贮性生化指标的变化. 文明富,胡梅珍,陈新,王海燕,卢诚,王文泉. 2013

[5]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[6]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[7]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[8]Somatic Embryogenesis and Organogenesis of Biofuel Plant Cassava (Manihot esculenta Crantz) Chinese Cultivars. Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Li, Ruimei,Duan, Ruijun,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Guo, Jianchun,Fu, Shaoping,Ji, Yimeng,Xi, Dujuan,Liu, Jiao,Zhang, Peng. 2012

[9]Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. Zeng, Changying,Chen, Xin,Zhou, Yufei,Bo, Weiping,Song, Shun,Deng, Deli,Guo, Xin,Wang, Bin,Wang, Wenquan,Peng, Ming,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhou, Junfei,Peng, Hai,Zhang, Weixiong,Chen, Zheng,Xia, Jing,Zhang, Kevin,Zhang, Weixiong,Zhang, Weixiong. 2014

[10]MeSAUR1, Encoded by a Small Auxin-Up RNA Gene, Acts as a Transcription Regulator to Positively Regulate ADP-Glucose Pyrophosphorylase Small Subunit1a Gene in Cassava. Ma, Ping'an,Liu, Chen,Meng, Yuhong,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan,Ma, Ping'an,Chen, Xin,Liu, Chen,Meng, Yuhong,Xia, Zhiqiang,Zeng, Changying,Lu, Cheng,Wang, Wenquan. 2017

[11]Production of calcium gluconate from cassava by Penicillium citrinum SCG-112. Sun, Hai-Yan,Zhao, Pingjuan,Li, Juanhua,Liu, Enshi,Peng, Ming,Sun, Hai-Yan,Zhao, Pingjuan,Peng, Ming. 2011

[12]Quantitative Trait Locus Analysis for Yield Traits of Cassava (Manihot esculenta Crantz). Yan, Qingxiang,Li, Kaimian,Zhang, Xueqin,Ye, Jianqiu,Chen, Songbi,Li, Qing X.,Huang, Dongyi. 2014

[13]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[14]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[15]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[16]Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Gu, Bi,Yao, Qingqun,Li, Kaimian,Chen, Songbi. 2013

[17]Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Hu, Meizhen,Wang, Wenquan,Hu, Meizhen,Xia, Zhiqiang,Zhou, Xincheng,Wang, Wenquan,Hu, Meizhen,Wang, Wenquan,Hu, Wenbin. 2016

[18]Environmental suitability of the red spider mite Tetranchus cinnabarinus (Acari: Tetranychidae) among cassava in China. Lu, Hui,Lu, Fuping,Xu, Xuelian,Chen, Qing. 2012

[19]Distribution and pathogen identification of cassava brown leaf spot in China. Pei, Y. L.,Shi, T.,Li, C. P.,Liu, X. B.,Cai, J. M.,Huang, G. X.. 2014

[20]Cloning and Sequence Analysis of Two cDNA Encoding invertase Inhibitors from Cassava (Manihot esculenta Crantz). Geng, Mengting,Yao, Yuan,Wu, Xiaohui,Fu, Shaoping,Guo, Jianchun. 2013

作者其他论文 更多>>