您好,欢迎访问江苏省农业科学院 机构知识库!

Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat-cotton rotation system

文献类型: 外文期刊

作者: Sui, Ning 1 ; Zhou, Zhiguo 1 ; Yu, Chaoran 1 ; Liu, Ruixian 2 ; Yang, Changqin 2 ; Zhang, Fan 1 ; Song, Guanglei 1 ; Meng 1 ;

作者机构: 1.Nanjing Agr Univ, Key Lab Crop Physiol & Ecol, Minist Agr, Nanjing 210095, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing 210014, Jiangsu, Peoples R China

关键词: Cotton;Potassium replacement;Potassium uptake;Potassium use efficiency;Soil available potassium;Wheat straw incorporation

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Potassium (K) deficiencies have occurred increasingly in cotton due to increased use of nitrogen (N) and phosphate (P) fertilizers and high yielding varieties in China. Crop residue retention can improve soil K concentration, however, the replacement effects of K fertilizer by various wheat straw incorporation rates in different soil textures were seldom reported. As a result, the effects of wheat straw incorporation and K fertilization rates on cotton yield and K use efficiency in the wheat-cotton rotation system were studied for 3 years at two sites (Nanjing and Dafeng) in the down reaches of Yangtze River in China. Compared with control, the lint yields after applying wheat straw and K fertilizer were improved by 102.4-143.5% and 44.2-144.3% at Nanjing in 2012 and 2013, respectively, and by 33.7-42.3% at Dafeng in 2013. There was no significant difference between treatments in lint yield at Dafeng in 2012. Potassium source (from wheat straw or inorganic K fertilizer) had no significant effect on lint yield and yield components. Soil available K concentration and K uptake by cotton were significantly affected by K input (wheat straw or K fertilizer). Potassium use efficiencies were typically higher in fields with wheat straw incorporation than with K fertilization. Potassium replacement amounts by wheat straw (9000 kg ha(-1)) were above 150 kg K2O ha(-1) of inorganic K fertilizer when the soil available K concentration before cotton transplantation was above 125 mg kg(-1) and about 115 kg K2O ha(-1) when soil available K concentration was below 125 mg kg(-1) at Nanjing. Moreover, K replacement effect by wheat straw was non-significant at Dafeng because of high soil available K concentration. In conclusion, K release from wheat straw can at least partly, even totally, replace chemical potash according to soil available K concentration in actual cotton production. (C) 2014 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Yu, Chaoran,Wang, Xiaojun,Hu, Bo,Meng, Yali,Zhou, Zhiguo,Yang, Changqin,Liu, Ruixian,Sui, Ning.

[2]Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.). Zhenzhen Xu,Chaojun Zhang,Xiaoyang Ge,Ni Wang,Kehai Zhou,Xiaojie Yang,Zhixia Wu,Xueyan Zhang,Chuanliang Liu,Zuoren Yang,Changfeng Li,Kun Liu,Zhaoen Yang,Yuyuan Qian,Fuguang Li.

[3]The Bt-cotton market: analysis of the Chinese situation within an international perspective. Xu, Naiyin,Fok, Michel.

[4]A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana.benthamiana and Nicotiana.tabacum. Zhang, Baolong,Zhang, Wenhua,Zhang, Baolong,Yang, Yuwen,Wang, Jinyan,Ling, Xitie,Hu, Zhongze,Liu, Tingli,Chen, Tianzi.

[5]Root-applied brassinolide can alleviate the NaCl injuries on cotton. Shu, Hongmei,Ni, Wanchao,Guo, Shugiao,Gong, Yuanyong,Shen, Xinlian,Zhang, Xianggui,Xu, Peng,Guo, Qi.

[6]Liberalization and regulation of varieties and seed markets in China: Bt-cotton case study. Fok, Michel,Xu, Naiyin.

[7]Potential use of cotton for remediating heavy metal-polluted soils in southern China. Xiongfeng Ma,Cangsong Zheng,Wei Li,Dong, Helin,Yang, Daigang,Shaoying Ai,Zhigang Zhang,Xiaojian Zhou,Chaoyou Pang,Haodong Chen,Kehai Zhou,Mingdeng Tang,Linfeng Li,Yanhong Wang,Yichun Li,Lishuang Guo,Helin Dong,Daigang Yang. 2017

[8]Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Liu, Shenglin,Zhang, Shaomin,Li, Hongbo,Feng, Gu,Wang, Xin-Xin,Liu, Shenglin,Zhang, Shaomin,Li, Hongbo,Feng, Gu,Zhang, Shaomin,Maimaitiaili, Baidengsha,Liu, Shenglin,Rengel, Zed,Wang, Xin-Xin. 2018

[9]Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. Shi, L.,Zhao, M. -W.,Li, S. -P.,Li, C. -H.,Han, Q.,Hu, H. -L.,Tang, C. -M.,Li, C. -H.. 2012

[10]Cotton production by family farms in China: Strengths and weaknesses of its integration into a market economy. Fok, MAC,Liang, WL,Wang, J,Xu, NY. 2006

[11]Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton. Li, Fangfang,Qian, Shasha,Zhou, Xueping,Gu, Zhouhang,Wang, Qian,Ye, Fei,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Wang, Jinyan,Zhang, Baolong,Ding, Bo,Wang, Guoliang,Zhou, Xueping. 2017

[12]Genomic, evolutionary and expression profile analysis of Hsp70 superfamily in A and D genome of cotton (Gossypium spp.) under the challenge of Verticillium dahliae. Xiao, Songhua,Yu, Jingzhong,Yu, Deyue,Xiao, Songhua,Xu, Jianwen,Zhao, Jun,Liu, Jianguang,Wu, Qiaojuan. 2017

[13]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

[14]The Application of GGE Biplot Analysis for Evaluating Test Locations and Mega-Environment Investigation of Cotton Regional Trials. Xu Nai-yin,Zhou Zhi-Guo,Xu Nai-yin,Zhang Guo-Wei,Li Jian,Michel, Fok. 2014

[15]Molecular cloning and analysis of a receptor-like promoter of Gbvdr3 gene in sea island cotton. Zhang, B. -J.,Chen, Q. -Z.,Tang, N.,Wang, L. -K.,Zhang, B. -J.,Zhang, H. -P.,Wang, R. -F.,Zhang, B. -L.. 2016

作者其他论文 更多>>