您好,欢迎访问江苏省农业科学院 机构知识库!

A P4-ATPase Gene GbPATP of Cotton Confers Chilling Tolerance in Plants

文献类型: 外文期刊

作者: Liu, Tingli 1 ; Guo, Shiwei 1 ; Lian, Ziyi 1 ; Chen, Fei 1 ; Yang, Yuwen 1 ; Chen, Tianzi 1 ; Ling, Xitie 1 ; Liu, Aiming 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Prov Key Lab Agrobiol, Nanjing 210014, Jiangsu, Peoples R China

2.Anhui Agr Univ, Sch Life Sci, Hefei 230036, Anhui, Peoples R China

关键词: Chilling tolerance;GbPATP;Malondialdehyde content;P4-ATPases;Transgenic tobacco;Virus-induced gene silencing

期刊名称:PLANT AND CELL PHYSIOLOGY ( 2020影响因子:4.927; 五年影响因子:5.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Members of the P4 subfamily of P-type ATPases are implicated in generating lipid asymmetry between the two lipid leaflets of the plasma membrane in Arabidopsis and are important for resistance to low temperatures, but the function of P4-ATPases in cotton remains unclear. In this study, we found using quantitative reverse transcription-PCR analysis that the expression of the P4-ATPase gene GbPATP in cotton was induced at low temperatures. In addition, GbPATP-silenced cotton plants were more sensitive to low temperatures and exhibited greater malondialdehyde (MDA) content and lower catalase (CAT) activity than the control plants. GbPATP transgenic tobacco plants showed better chilling tolerance, had a lower MDA content and had higher CAT activity than wild-type plants under low-temperature treatment. The green fluorescent protein (GFP)-GbPATP fusion protein was found to be localized to the cell plasma membrane. Collectively, the results suggest that GbPATP functions as a P4-ATPase and plays an important role in improving chilling tolerance in plant.

  • 相关文献

[1]Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L.) to chilling temperature in the light. Li, Xia,Cao, Kun,Wang, Chao,Sun, Zhi-wei,Yan, Lina. 2010

[2]A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress. Chen, Tianzi,Li, Wenjuan,Liu, Aimin,Zhang, Baolong,Li, Wenjuan,Hu, Xuehong,Guo, Jiaru,Liu, Aimin.

[3]Characterization and expression profile of CaNAC2 pepper gene. Guo, Wei-Li,Chen, Ru-Gang,Yin, Yan-Xu,Gong, Zhen-Hui,Guo, Wei-Li,Chen, Bi-Hua,Du, Xiao-Hua,Zhang, Yu-Yuan,Wang, Shu-Bin. 2015

[4]Overexpression of a PIP1 Gene from Salicornia bigelovii in Tobacco Plants Improves Their Drought Tolerance. Sun, Xiaobo,Deng, Yanming,Liang, Lijian,Jia, Xinping,Xiao, Zheng,Su, Jiale.

[5]Identification and differential expression of two isogenes encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase in Glycine max. Zhang, Man,Li, Kai,Liu, Jianyu,Yu, Deyue,Zhang, Man. 2012

作者其他论文 更多>>