您好,欢迎访问黑龙江省农业科学院 机构知识库!

Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana

文献类型: 外文期刊

作者: Zhao, Jinfeng 1 ; Zhou, Huapeng 2 ; Zhang, Ming 4 ; Gao, Yanan 1 ; Li, Long 6 ; Gao, Ying 1 ; Li, Ming 4 ; Yang, Yuhong 7 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China

2.China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Beijing 100193, Peoples R China

3.Sichuan Univ, Coll Life Sci, Chengdu 610064, Peoples R China

4.Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China

5.Heilongjiang Acad Agr Sci, Ind Crop Inst, Harbin 150086, Peoples R China

6.Shenyang Agr Univ, Coll Life Sci, Shenyang 110161, Peoples R China

7.Shenya

关键词: ABA overly sensitive;deubiquitinating enzyme;drought sensitivity;salt stress;stomata;protein phosphatase 2C

期刊名称:PLANT CELL AND ENVIRONMENT ( 影响因子:7.228; 五年影响因子:7.791 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Abscisic acid (ABA) is an important plant hormone integrating environmental stress and plant growth. Protein ubiquitination and deubiquitination are reversible processes catalysed by E3 ubiquitin ligase and deubiquitinating enzyme, respectively. Lots of E3 ubiquitin ligase and transcriptional factors modified by ubiquitination were reported to modulate ABA signalling. However, no deubiquitinating enzyme has been identified that functions in ABA signalling until now. Here, we isolated an ABA overly sensitive mutant, ubp24, in which the gene encoding ubiquitin-specific protease 24 (UBP24, At4g30890) was disrupted by a T-DNA insertion. The ubp24 mutant was hypersensitive to ABA and salt stress in both postgerminative growth and seedling growth. However, stomata closure in the ubp24 mutant was less sensitive to ABA, and the ubp24 mutant showed drought sensitivity. UBP24 possessed deubiquitinating enzyme activity, and the activity was essential for UBP24 function. Additionally, UBP24 formed homodimer in vivo. UBP24 was genetically upstream of ABI2, and the phosphatase activity of protein phosphatase 2C was decreased in the ubp24 mutant compared with the wild type in the presence of ABA. These results uncover an important regulatory role for the ubiquitin-specific protease in response to ABA and salt stress in plant.

  • 相关文献

[1]PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance. Shen, Xinjie,Guo, Xinwei,Guo, Xiao,Zhao, Di,Li, Tianhong,Shen, Xinjie,Zhao, Wei,Chen, Jingsheng,Li, Tianhong.

[2]Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Li Ming-na,Feng Zi-rong,Sun Yan,Zhang, Kun,Cao Shi-hao,Long Rui-cai,Kang Jun-mei,Wang Zhen,Liu Feng-qi. 2018

[3]Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. Long, Ruicai,Zhang, Tiejun,Kang, Junmei,Cong, Lili,Gao, Yanli,Yang, Qingchuan,Li, Mingna,Sun, Yan,Liu, Fengqi. 2016

[4]Construction of Two Suppression Subtractive Hybridization Libraries and Identification of Salt-Induced Genes in Soybean. Li Liang,Wang Wei-qi,Wu Cun-xiang,Han Tian-fu,Hou Wen-sheng,Li Liang. 2012

[5]INTERACTIVE EFFECTS OF SALINITY AND PROLINE ON RICE AT THE ULTRASTRUCTURAL LEVEL. Sha, Han-Jing,Hu, Wen-Cheng,Jia, Yan,Liu, Hua-Long,Wang, Jing-Guo,Zou, De-Tang,Zhao, Hong-Wei,Chang, Hui-Lin. 2017

[6]A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Meng, Ling-Bo,Meng, Ling-Bo,Chen, Yi-Bo,Wang, Yue-Feng,Wang, Bai-Chen,Lu, Tian-Cong,Lu, Tian-Cong,Qian, Chun-Rong,Yu, Yang,Ge, Xuan-Liang,Li, Xiao-Hui.

作者其他论文 更多>>