您好,欢迎访问中国水产科学研究院 机构知识库!

Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed

文献类型: 外文期刊

作者: Guo, Xia 1 ; Chen, Dan-Dan 1 ; Peng, Kai-Song 1 ; Cui, Zheng-Wei 1 ; Zhang, Xu-Jie 1 ; Li, Shun 1 ; Zhang, Yong-An 1 ;

作者机构: 1.Chinese Acad Sci, Inst Hydrobiol, Wuhan 430072, Peoples R China

2.Chinese Acad Fishery Sci, Yangtze River Fisheries Res Inst, Wuhan 430223, Peoples R China

3.Anhui Agr Univ, Hefei 230036, Peoples R China

4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China

5.Shanghai Ocean Univ, Shanghai 201306, Peoples R China

关键词: Bacillus subtilis;Probiotic;Stress condition resistance;Anti-inflammation;Grass carp

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Bacillus subtilis is widely used as probiotic species in aquaculture for water quality control, growth promoting, or immunity enhancing. The aim of this study is to find novel B. subtilis strains from fish as potential probiotics for aquaculture. Eleven B. subtilis isolates derived from the intestinal tract of grass carp were identified by gene sequencing and biochemical tests. These isolates were classified into 4 groups, and the representatives (GC-5, GC-6, GC-21 and GC-22) of each group were further investigated for antibiotic susceptibility, sporulation rate, biofilm formation, activity against pathogenic bacteria, resistance to stress conditions of intestinal tract (high percentage of bile and low pH) and high temperature, which are important for probiotics to be used as feed additives. Additionally, the adhesion properties of the 4 characterized strains were assessed using Caco-2 cell and gut mucus models. The results showed that the 4 strains differed in their capacities to adhere to intestinal epithelial cells and mucus. Furthermore, the strains GC-21 and GC-22 up-regulated the expression levels of IL-10 and TGF-beta but down-regulated IL-1 beta, suggesting their potential anti-inflammatory abilities. Based on physiological properties of the 4 characterized B. subtilis strains, one or more strains may have potential to be used as probiotics in aquaculture. (C) 2016 Elsevier Ltd. All rights reserved.

  • 相关文献

[1]Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Wang, Miao,Lu, Maixin,Ke, Xiaoli,Liu, Zhigang,Gao, Fengying,Cao, Jianmeng,Zhu, Huaping,Yi, Mengmeng,Yu, Deguang,Liu, Guanbin.

[2]Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Chai, Peng-Cheng,Song, Xiao-Ling,Xu, Hua,Huang, Jie,Huang, Jie,Chen, Guo-Fu.

[3]The ability of marine Bacillus spp. isolated from fish gastrointestinal tract and culture pond sediment to inhibit growth of aquatic pathogenic bacteria. Chen, Y.,Zhu, W.,Li, J.,Mo, Z.,Xiao, P.. 2016

[4]1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Tang, Lining,Huang, Kai,Sun, Lei,Huang, Qing,Bi, Yanjun,Xie, Jun,Yu, Dan. 2017

[5]Isolation and characterization of Bacillus spp. M001 for potential application in turbot (Scophthalmus maximus L.) against Vibrio anguillarum. Chen, Y.,Zhu, W. Y.,Li, J.,Li, G. Y.,Huang, J.,Mo, Z. L.,Xiao, P.,Yue, S..

[6]The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus). Cui, Yan-ting,Liu, Bo,Xie, Jun,Xu, Pao,Habte-Tsion, H. -Michael,Zhang, Yuan-yuan,Cui, Yan-ting,Liu, Bo,Xie, Jun,Xu, Pao,Habte-Tsion, H. -Michael,Zhang, Yuan-yuan.

[7]Identification of a vasa homologue gene in grass carp and its expression pattern in tissues and during embryogenesis. Li, Chuang-Ju,Liu, Ling,Chen, Xi-Hua,Zhang, Tao,Gan, Fang,Cheng, Bao-Ling,Li, Chuang-Ju,Liu, Ling,Chen, Xi-Hua,Zhang, Tao,Gan, Fang.

[8]Genome-wide identification and characterization of conserved and novel microRNAs in grass carp (Ctenopharyngodon idella) by deep sequencing. Gong, Wangbao,Xie, Jun,Wang, Guangjun,Yu, Deguang,Huang, Yong,Sun, Xihong.

[9]Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Liu, Mengmei,Guo, Wei,Wu, Fan,Qu, Qicai,Tan, Qingsong,Gong, Wangbao.

[10]Molecular cloning and gene/protein expression of FAT/CD36 from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary energy. Tian, Juan,Liu, Wei,Wu, Fan,Yu, Lijuan,Lu, Xing,Yang, Chang-Geng,Jiang, Ming,Wen, Hua,Tian, Juan,Jiang, Ming,Gao, Weihua.

[11]Effect of Ultrastructure on Changes of Textural Characteristics between Crisp Grass Carp (Ctenopharyngodon Idellus C.Et V) and Grass Carp (Ctenopharyngodon Idellus) Inducing Heating Treatment. Lin, Wan-Ling,Yang, Xian-Qing,Li, Lai-Hao,Hao, Shu-Xian,Wang, Jin-Xu,Huang, Hui,Wei, Ya,Wu, Yan-Yan.

[12]Transcriptome analysis of the grass carp (Ctenopharyngodon idella) using 454 pyrosequencing methodology for gene and marker discovery. Bai, J. J.. 2015

[13]RELATION BETWEEN PROTEIN CHARACTERISTICS AND TPA TEXTURE CHARACTERISTICS OF CRISP GRASS CARP (CTENOPHARYNGODON IDELLUS C. ET V) AND GRASS CARP (CTENOPHARYNGODON IDELLUS). Lin, Wan-Ling,Lin, Wan-Ling,Zeng, Qing-Xiao,Zhu, Zhi-Wei,Song, Guo-Sheng,Song, Guo-Sheng,Lin, Wan-Ling. 2012

[14]Occurrence of Bothriocephalus acheilognathi (Cestoda, Bothriocephallidea) in grass carp Ctenopharyngodon idella in the Changjiang River drainage. Wang Guitang,Wang Guitang,Xi Bingwen,Xie Jun. 2011

[15]The effect of hyperthermia on cell viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). Cui, Yanting,Liu, Bo,Xie, Jun,Xu, Pao,Tsion, H. Michael H.,Zhang, Yuanyuan,Cui, Yanting,Liu, Bo,Xie, Jun,Xu, Pao,Zhang, Yuanyuan. 2013

[16]Respiratory response of grass carp Ctenopharyngodon idellus to dissolved oxygen changes at three acclimation temperatures. Zhao, Zhigang,Xu, Qiyou,Dong, Shuanglin. 2018

[17]Isolation, Identification, and Detection, of the Virulence Factor of Vibrio cholerae in Grass Carp. Teng, Tao,Liang, Liguo,Xie, Jun. 2015

[18]Determination of flavomycin residue in grass carp by high performance liquid chromatography. Tian Liang-liang,Huang Dong-mei,Shi Yong-fu,Han Feng,Zhou Peng. 2015

[19]Development of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of grass carp reovirus. Zhang, Qing-Li,Yan, Yi,Shi, Cheng-Yin,Wang, Qin-Tao,Huang, Jie,Shen, Jin-Yu,Hao, Gui-Jie,Liu, Hong. 2013

[20]Effects of processing method and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Gan, Lian,Gan, Lian,Liu, Yong-Jian,Tian, Li-Xia,Liu, Fu-Jia,Yang, Hui-Jun,Chen, Yong-Jun,Liang, Gui-Yin,Yue, Yi-Rong. 2015

作者其他论文 更多>>