您好,欢迎访问中国水产科学研究院 机构知识库!

Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge

文献类型: 外文期刊

作者: Liu, Fengqiao 1 ; Su, Baofeng 2 ; Fu, Qiang 1 ; Shang, Mei 2 ; Gao, Chengbin 1 ; Tan, Fenghua 4 ; Li, Chao 1 ;

作者机构: 1.Qingdao Agr Univ, Marine Sci & Engn Coll, Qingdao 266109, Peoples R China

2.Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Natl & Local Joint Engn Lab Freshwater Fish Breed, Harbin 150070, Heilongjiang, Peoples R China

3.Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Key Lab Freshwater Aquat Biotechnol & Breeding, Minist Agr, Harbin 150070, Heilongjiang, Peoples R China

4.Qingdao Agr Univ, Sch Int Educ & Exchange, Qingdao 266109,

关键词: Toll-like receptor;Mucosal tissues;Vibrio anguillarum;Streptococcus iniae

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: TLRs (Toll-like receptors) are very important pathogen pattern recognition receptors, which control the host immune responses against pathogens through recognition of molecular patterns specific to microorganisms. In this regard, investigation of the turbot TLRs could help to understand the immune responses for pathogen recognition. Here, transcripts of two TLR5 (TLR5a and TLR5b) were captured, and their protein structures were also predicted. Meanwhile, we characterized their expression patterns with emphasis on mucosal barriers following different bacterial infection. The phylogenetic analysis revealed the turbot TLR5 genes showed the closest relationship to Paralichthys olivaceus. These two TLR5 genes were ubiquitously expressed in healthy tissues although expression levels varied among the tested tissues. In addition, the two copies of turbot TLR5 showed different expression patterns after bacterial infections. After Vibrio anguillarum infection, TLR5a was generally up-regulated in intestine and skin while down-regulated in gill, while TLR5b showed a general down-regulation in mucosal tissues. After Streptococcus iniae infection, the TLR5a was down-regulated at 2 h while generally up-regulated after 4 h in mucosal tissues. Interestingly, the TLR5b was up-regulated in intestine while down-regulated in skin and gill after Streptococcus iniae infection. These findings suggested a possible irreplaceable role of TLR5 in the immune responses to the infections of a broad range of pathogens that include Gram-negative and Gram-positive bacteria. Future studies should apply the bacteriological and immune-histochemical techniques to study the main sites on the mucosal tissue for bacteria entry and identify the ligand specificity of the turbot TLRs after challenge. (C) 2017 Elsevier Ltd. All rights reserved.

  • 相关文献

[1]Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Li, Chao,Gao, Chengbin,Fu, Qiang,Chen, Jinghua,Su, Baofeng,Su, Baofeng.

[2]The involvement of cathepsin F gene (CTSF) in turbot (Scophthalmus maximus L.) mucosal immunity. Gao, Chengbin,Fu, Qiang,Song, Huanhuan,Zhou, Shun,Li, Chao,Tan, Fenghua,Su, Baofeng,Su, Baofeng,Fu, Qiang.

[3]Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. Gao, Chengbin,Cai, Xin,Song, Huanhuan,Wang Wenqi,Li, Chao,Su, Baofeng,Su, Baofeng,Zhang, Yu.

[4]Genome-wide characterization of Toll-like receptor gene family in common carp (Cyprinus carpio) and their involvement in host immune response to Aeromonas hydrophila infection. Gong, Yiwen,Feng, Shuaisheng,Li, Shangqi,Zhang, Yan,Zhao, Zixia,Jiang, Yanliang,Gong, Yiwen,Hu, Mou,Jiang, Yanliang,Xu, Peng. 2017

[5]Co-expression of march5b and tlr7 in large yellow croaker Larimichthys crocea in response to Cryptocaryon irritans infection. Zhang, D. L.,Chen, J.,Wang, Z. Y.,Yu, D. H.,Chen, C..

[6]Identification, structural characterization, and expression analysis of toll-like receptors 2 and 3 from gibel carp (Carassius auratus gibelio). Fan, Yuding,Zhou, Yong,Zeng, Lingbing,Jiang, Nan,Liu, Wenzhi,Zhao, Jianqing,Zhong, Qiwang. 2018

[7]Identification and screening of effective protective antigens for channel catfish against Streptococcus iniae. Wang, Yajun,Wang, Erlong,He, Yang,Wang, Kaiyu,Yang, Qian,Wang, Jun,Geng, Yi,Ouyang, Ping,Lai, Weimin,Wang, Yajun,Wang, Kaiyu,Geng, Yi,Chen, Defang,Huang, Xiaoli. 2017

[8]A Streptococcus iniae DNA vaccine delivered by a live attenuated Edwardsiella tarda via natural infection induces cross-genus protection. Sun, Y.,Hu, Y-H.,Sun, L.,Sun, Y.,Liu, C-S.. 2012

[9]SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region. Sun, Yun,Sun, Li,Hu, Yong-hua,Sun, Yun,Xing, Ming-qing,Liu, Chun-sheng. 2013

[10]BIRC7 gene in channel catfish (Ictalurus punctatus): Identification and expression analysis in response to Edwardsiella tarda, Streptococcus iniae and channel catfish Hemorrhage Reovirus. Li, Min,Wang, Qi-Long,Chen, Song-Lin,Sha, Zhen-Xia,Li, Min,Liu, Yang.

[11]Construction and comparative study of monovalent and multivalent DNA vaccines against Streptococcus iniae. Sun, Yun,Hu, Yong-Hua,Sun, Li,Sun, Yun,Liu, Chun-Sheng.

[12]MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Xu, Tian-jun,Chen, Song-lin,Ji, Xiang-shan,Tian, Yong-sheng,Xu, Tian-jun. 2008

[13]MHC class II alpha gene polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). Xu, Tian-jun,Chen, Song-lin,Zhang, Yu-xi,Xu, Tian-jun. 2010

[14]Cloning, characterization, and expression of a novel member of proteasomal subunits gene in turbot, Scophthalmus maximus. Zhang Bo,Song Wenping,Zheng Debin,Ma Chao,Xiao Guangxia,Wang Xianli. 2015

[15]Effects of dietary supplementation of A3 alpha-peptidoglycan on innate immune responses and defense activity of Japanese flounder (Paralichthys olivaceus). Zhou, J,Song, XL,Huang, J,Wang, XH. 2006

[16]Molecular responses of calreticulin gene to Vibrio anguillarum and WSSV challenge in the ridgetail white prawn Exopalaemon carinicauda. Duan, Yafei,Liu, Ping,Li, Jitao,Li, Jian,Chen, Ping,Duan, Yafei,Wang, Yun. 2014

[17]MHC polymorphism and disease resistance to vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis). Du, Min,Chen, Song-lin,Liu, Yang,Yang, Jing-feng,Du, Min,Du, Min,Liu, Yan-hong. 2011

[18]Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells. Gao, Quanxin,Min, Minghua,Zhang, Chenjie,Peng, Shiming,Shi, Zhaohong,Gao, Qian.

[19]A Genome Scan for Quantitative Trait Loci Associated with Vibrio anguillarum Infection Resistance in Japanese Flounder (Paralichthys olivaceus) by Bulked Segregant Analysis. Wang, Lei,Wang, Lei,Fan, Caixia,Liu, Yang,Zhang, Yingping,Deng, Han,Xu, Ying,Tian, Yongsheng,Liao, Xiaolin,Xie, Mingshu,Li, Wenlong,Chen, Songlin,Wang, Lei,Liu, Shoutang,Sun, Deqiang.

[20]Transcriptome analysis revealed changes of multiple genes involved in immunity in Cynoglossus semilaevis during Vibrio anguillarum infection. Zhang, Xiang,Chen, Songlin,Chen, Yadong,Shao, Changwei,Wang, Qilong,Lu, Yang,Gong, Guangye,Sha, Zhenxia,Zhang, Xiang,Ding, Shaoxiong,Wang, Shaolin,Liu, Yang.

作者其他论文 更多>>