您好,欢迎访问黑龙江省农业科学院 机构知识库!

Inbreeding Avoidance Drives Consistent Variation of Fine-Scale Genetic Structure Caused by Dispersal in the Seasonal Mating System of Brandt's Voles

文献类型: 外文期刊

作者: Liu, Xiao Hui 2 ; Yue, Ling Fen 1 ; Wang, Da Wei 1 ; Li, Ning 1 ; Cong, Lin 3 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China

2.Chinese Acad Agr Sci, Inst Plant Protect, Key Lab Weed & Rodent Biol & Management, Beijing 100193, Peoples R China

3.Heilongjiang Acad Agr Sci, Inst Plant Protect, Harbin, Heilongjiang Pr, Peoples R China

期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )

ISSN: 1932-6203

年卷期: 2013 年 8 卷 3 期

页码:

收录情况: SCI

摘要: Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt's voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual-and population-level analyses, we found that the majority of Brandt's vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt's voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species.

  • 相关文献
作者其他论文 更多>>