Polystyrene nanoplastics' accumulation in roots induces adverse physiological and molecular effects in water spinach Ipomoea aquatica Forsk
文献类型: 外文期刊
作者: Gao, Dandan 1 ; Liao, Hongping 1 ; Junaid, Muhammad 1 ; Chen, Xikun 1 ; Kong, Chunmiao 1 ; Wang, Qiuping 1 ; Pan, Ting 1 ; Chen, Guanglong 2 ; Wang, Xu 3 ; Wang, Jun 1 ;
作者机构: 1.South China Agr Univ, Coll Marine Sci, Guangzhou 510642, Peoples R China
2.Guangxi Acad Sci, Inst Ecoenvironm Res, Nanning 530007, Peoples R China
3.Guangdong Acad Agr Sci, Inst Qual Stand & Monitoring Technol Agroprod, Guangzhou 510640, Peoples R China
4.Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510006, Peoples R China
关键词: Polystyrene nanoplastics; Water spinach; Roots; Photosynthesis; Oxidative stress; Bioaccumulation
期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:9.8; 五年影响因子:9.6 )
ISSN: 0048-9697
年卷期: 2023 年 872 卷
页码:
收录情况: SCI
摘要: The ubiquity of plastic pollution has emerged as a perplexing issue for aquatic and terrestrial plants. To assess the toxic effects of polystyrene NPs (PS-NPs, 80 nm), we conducted a hydroponic experiment in which water spinach (Ipomoea aquatica Forsk) was subjected to low (0.5 mg/L), medium (5 mg/L), and high (10 mg/L) concentrations of fluorescent PS-NPs for 10 days to examine their accumulation and transportation in water spinach and associated impacts on growth, photosynthesis, antioxidant defense systems. Laser confocal scanning microscopy (LCSM) observations at 10 mg/L PS-NPs exposure indicated that PS-NPs only adhered to the root surface of water spinach and were not transported upward, indicating that short-term exposure to high concentrations of PS-NPs (10 mg/L) did not cause the internalization of PS-NPs in the water spinach. However, this high concentration of PS-NPs (10 mg/L) discernibly inhibited the growth parameters (fresh weight, root length and shoot length), albeit failed to induce any significant impact on chlorophyll a and chlorophyll b concentrations. Meanwhile, high concentration of PS-NPs (10 mg/L) significantly decreased the SOD and CAT activities in leaves (p < 0.05). At the molecular level, low and medium concentrations of PS-NPs (0.5, 5 mg/L) significantly promoted the expression of photosynthesis (PsbA and rbcL) and antioxidantrelated (SIP) genes in leaves (p < 0.05), and high concentration of PS-NPs (10 mg/L) significantly increased the transcription levels of antioxidant-related (APx) genes (p < 0.01). Our results imply that PS-NPs accumulate in the roots of water spinach, compromising the upward transport of water and nutrients and undermining the antioxidant defense system of the leaves at the physiological and molecular levels. These results provide a fresh perspective to examine the implications of PS-NPs on edible aquatic plants, and future efforts should be focused intensively on the impacts of PS-NPs on agricultural sustainability and food security.
- 相关文献
作者其他论文 更多>>
-
Floral Response to Heat: A Study of Color and Biochemical Adaptations in Purple Chrysanthemums
作者:Wang, Fenglan;Li, Zhimei;Wu, Qing;Guo, Yanhong;Wang, Jun;Luo, Honghui;Zhou, Yiwei
关键词:chrysanthemum; high temperature; flower color; anthocyanin; biosynthesis; degradation
-
pOsHAK1:OsSUT1 Promotes Sugar Transport and Enhances Drought Tolerance in Rice
作者:Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu
关键词:rice; drought tolerance; sugar transport; inducible promoter
-
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus
作者:Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu
关键词:Aspergillus flavus; aflatoxin biosynthesis; branched-chain amino acids; AflaILVB/G/I; AflaILVD; fungal secondary metabolites
-
Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes
作者:Geng, Qianqian;Zou, Liang;Guo, Mengmeng;Li, Fengling;Qin, Hanlin;Tan, Zhijun;Geng, Qianqian;Liu, Xiangxiang;Wang, Xu;Zou, Liang;Liu, Hong;Wang, Xu;Tan, Zhijun
关键词:Perfluoroalkyl acids; Brominated flame retardant; Dissolved organic matter; Bioconcentration; Mussel; Co-exposure
-
Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome
作者:Han, Chuang;Cheng, Qin;Xie, Jiatao;Tang, Yanni;Zhang, Huan;Hu, Chengxiao;Zhao, Xiaohu;Han, Chuang;Du, Xiaoping;Zhao, Xiaohu;Liang, Lianming;Fan, Guocheng;Wang, Xu
关键词:Microbial diversity; oilseed rape; rhizosphere beneficial bacteria; Sclerotinia sclerotiorum; selenium; synthetic community
-
Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s
作者:Zhang, Hao;He, Xuyou;Munyaneza, Venuste;Zhang, Guangzeng;Ye, Xiangsheng;Wang, Chuang;Shi, Lei;Ding, Guangda;Wang, Xu
关键词:Brassica napus; Purple acid phosphatases; Expression profile; BnaPAP10as; Root-associated APase activity; Phosphate homeostasis
-
The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain
作者:Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Geng, Anjing;Lian, Wenli;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang
关键词:rice; arsenic; molecular mechanism; agronomic practices; biomolecular technology