Forecasting regional apple first flowering using the sequential model and gridded meteorological data with spatially optimized calibration
文献类型: 外文期刊
作者: Zhu, Yaohui 1 ; Yang, Guijun 1 ; Yang, Hao 1 ; Guo, Liang 5 ; Xu, Bo 1 ; Li, Zhenhai 1 ; Han, Shaoyu 1 ; Zhu, Xicun 6 ; Li, Zhenhong 4 ; Jones, Glyn 7 ;
作者机构: 1.Minist Agr & Rural Affairs, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
2.Beijing Forestry Univ, Sch Informat Sci & Technol, Beijing 100083, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Chang Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China
5.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
6.Shandong Agr Univ, Coll Resources & Environm, Tai An 271018, Shandong, Peoples R China
7.Newcastle Univ, Sch Nat & Environm Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词: Apple first-flowering; Gridded meteorological data; Sequential model; Chill and heat requirement; Regional-scale forecast
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:6.757; 五年影响因子:6.817 )
ISSN: 0168-1699
年卷期: 2022 年 196 卷
页码:
收录情况: SCI
摘要: China is one of the largest apple-producing countries in the world, with large orchards and diverse climates. Accurately forecasting the first-flowering time of apple trees can assist orchard managers in their deciding when to apply anti-freeze. The temperature-driven sequential model from previous studies can be used to forecast the flowering phenology of deciduous fruit trees. However, this model requires many years of observational data for calibration, so flowering forecasts based on traditional phenological models cannot be implemented in areas that lack such historical data. To overcome this problem, the present work combines a spatial rather than a temporal phenological survey method with 1-km-gridded temperature products to calibrate the chill and heat requirement parameters of the sequential model. We then use the model to forecast the first-flowering on a regional scale for Luochuan and Linyi, which are two main apple-producing areas of China. The results show that the proposed method accurately forecasts regional flowering. The root mean squared errors (RMSE) for Luochuan and Linyi were 4.7 and 4.4 days, respectively, and the normalized RMSEs were all less than 5.19%. We expect the proposed regional first-flowering forecast method to be an important aid to optimize orchard management.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral