Prediction of Wheat Grain Protein by Coupling Multisource Remote Sensing Imagery and ECMWF Data
文献类型: 外文期刊
作者: Xu, Xiaobin 1 ; Teng, Cong 1 ; Zhao, Yu 3 ; Du, Ying 3 ; Zhao, Chunqi 3 ; Yang, Guijun 3 ; Jin, Xiuliang 2 ; Song, Xiaoyu 3 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs PR China, Beijing 100097, Peoples R China
2.Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Peoples R China
5.DAFNE Univ Tuscia, Via San Camillo de Lellis, I-01100 Viterbo, Italy
关键词: Multi-source Remote Sensing Imagery; European Center for Medium-range Weather Forecasts (ECMWF) meteorological data; grain protein content; hierarchical linear model
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2020 年 12 卷 8 期
页码:
收录情况: SCI
摘要: Industrialization production with high quality and effect on winter is an important measure for accelerating the shift from increasing agricultural production to improving quality in terms of grain protein content (GPC). Remote sensing technology achieved the GPC prediction. However, large deviations in interannual expansion and regional transfer still exist. The present experiment was carried out in wheat producing areas of Beijing (BJ), Renqiu (RQ), Quzhou, and Jinzhou in Hebei Province. First, the spectral consistency of Landsat 8 Operational Land Imager (LS8) and RapidEye (RE) was compared with Sentinel-2 (S2) satellites at the same ground point in the same period. The GPC prediction model was constructed by coupling the vegetation index with the meteorological data obtained by the European Center for Medium-range Weather Forecasts using hierarchical linear model (HLM) method. The prediction and spatial expansion of regional GPC were validated. Results were as follows: (1) Spectral information calculated from S2 imagery were highly consistent with LS8 (R-2 = 1.00) and RE (R-2 = 0.99) imagery, which could be jointly used for GPC modeling. (2) The predicted GPC by using the HLM method (R-2 = 0.524) demonstrated higher accuracy than the empirical linear model (R-2 = 0.286) and showed higher improvements across inter-annual and regional scales. (3) The GPC prediction results of the verification samples in RQ, BJ, Xiaotangshan (XTS) in 2018, and XTS in 2019 were ideal with root mean square errors of 0.61%, 1.13%, 0.91%, and 0.38%, and relative root mean square error of 4.11%, 6.83%, 6.41%, and 2.58%, respectively. This study has great application potential for regional and inter-annual quality prediction.
- 相关文献
作者其他论文 更多>>
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Optimized Design of Robotic Arm for Tomato Branch Pruning in Greenhouses
作者:Ma, Yuhang;Chen, Liping;Feng, Qingchun;Sun, Yuhuan;Guo, Xin;Zhang, Wanhao;Wang, Bowen;Chen, Liping;Feng, Qingchun;Guo, Xin;Chen, Liping
关键词:agricultural robot; tomato pruning; manipulator; structural optimization
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model



