您好,欢迎访问广东省农业科学院 机构知识库!

Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion

文献类型: 外文期刊

作者: Wen, Tao 1 ; Yuan, Jun 1 ; He, Xiaoming 2 ; Lin, Yue 2 ; Huang, Qiwei 1 ; Shen, Qirong 1 ;

作者机构: 1.Nanjing Agr Univ, Jiangsu Prov Key Lab Organ Solid Waste Utilizat, Jiangsu Collaborat Innovat Ctr Solid Organ Wastes, Key Lab Plant Immun,Educ Minist,Engn Ctr Resource, Nanjing 210095, Peoples R China

2.Guangdong Acad Agr Sci, Vegetable Res Inst, Guangzhou 510640, Guangdong, Peoples R China

期刊名称:HORTICULTURE RESEARCH ( 影响因子:6.793; 五年影响因子:6.589 )

ISSN: 2662-6810

年卷期: 2020 年 7 卷 1 期

页码:

收录情况: SCI

摘要: Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine-learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be "cultured" by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids.

  • 相关文献
作者其他论文 更多>>