Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties
文献类型: 外文期刊
作者: Du, Jianjun 1 ; Lu, Xianju 1 ; Fan, Jiangchuan 1 ; Qin, Yajuan 1 ; Yang, Xiaozeng 1 ; Guo, Xinyu 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing, Peoples R China
3.Beijing Agrobiotechnol Res Ctr, Beijing Key Lab Agr Genet Resources & Biotechnol, Beijing, Peoples R China
关键词: high throughput phenotyping; lettuce; object detection; semantic segmentation; static trait; dynamic trait; growth rate
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )
ISSN: 1664-462X
年卷期: 2020 年 11 卷
页码:
收录情况: SCI
摘要: The yield and quality of fresh lettuce can be determined from the growth rate and color of individual plants. Manual assessment and phenotyping for hundreds of varieties of lettuce is very time consuming and labor intensive. In this study, we utilized a "Sensor-to-Plant" greenhouse phenotyping platform to periodically capture top-view images of lettuce, and datasets of over 2000 plants from 500 lettuce varieties were thus captured at eight time points during vegetative growth. Here, we present a novel object detection-semantic segmentation-phenotyping method based on convolutional neural networks (CNNs) to conduct non-invasive and high-throughput phenotyping of the growth and development status of multiple lettuce varieties. Multistage CNN models for object detection and semantic segmentation were integrated to bridge the gap between image capture and plant phenotyping. An object detection model was used to detect and identify each pot from the sequence of images with 99.82% accuracy, semantic segmentation model was utilized to segment and identify each lettuce plant with a 97.65% F1 score, and a phenotyping pipeline was utilized to extract a total of 15 static traits (related to geometry and color) of each lettuce plant. Furthermore, the dynamic traits (growth and accumulation rates) were calculated based on the changing curves of static traits at eight growth points. The correlation and descriptive ability of these static and dynamic traits were carefully evaluated for the interpretability of traits related to digital biomass and quality of lettuce, and the observed accumulation rates of static straits more accurately reflected the growth status of lettuce plants. Finally, we validated the application of image-based high-throughput phenotyping through geometric measurement and color grading for a wide range of lettuce varieties. The proposed method can be extended to crops such as maize, wheat, and soybean as a non-invasive means of phenotype evaluation and identification.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
作者:Ma, Hanyu;Zhang, Dongsheng;Wen, Weiliang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Gou, Wenbo;Liang, Yuqiang;Zhang, Minggang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu
关键词:maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning



