您好,欢迎访问中国水产科学研究院 机构知识库!

A consensus linkage map of common carp (Cyprinus carpio L.) to compare the distribution and variation of QTLs associated with growth traits

文献类型: 外文期刊

作者: Zheng XianHu 1 ; Kuang YouYi 1 ; Lv WeiHua 1 ; Cao DingChen 1 ; Zhang XiaoFeng 1 ; Li Chao 1 ; Lu CuiYun 1 ; Sun XiaoWen 1 ;

作者机构: 1.Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Harbin 150070, Peoples R China

2.Shanghai Ocean Univ, Coll Fisheries & Life Sci, Shanghai 201306, Peoples R China

关键词: common carp;consensus map;comparative QTL analysis;growth-related traits

期刊名称:SCIENCE CHINA-LIFE SCIENCES ( 影响因子:6.038; 五年影响因子:4.754 )

ISSN: 1674-7305

年卷期: 2013 年 56 卷 4 期

页码:

收录情况: SCI

摘要: The ability to detect and identify quantitative trait loci (QTLs) in a single population is often limited. Analyzing multiple populations in QTL analysis improves the power of detecting QTLs and provides a better understanding of their functional allelic variation and distribution. In this study, a consensus map of the common carp was constructed, based on four populations, to compare the distribution and variation of QTLs. The consensus map spans 2371.6 cM across the 42 linkage groups and comprises 257 microsatellites and 421 SNPs, with a mean marker interval of 3.7 cM/marker. Sixty-seven QTLs affecting four growth traits from the four populations were mapped to the consensus map. Only one QTL was common to three populations, and nine QTLs were detected in two populations. However, no QTL was common to all four populations. The results of the QTL comparison suggest that the QTLs are responsible for the phenotypic variability observed for these traits in a broad array of common carp germplasms. The study also reveals the different genetic performances between major and minor genes in different populations.

  • 相关文献

[1]Predicted Body Weight of Progeny Obtained by a Three-Way Cross and Back Cross Based on a 3 × 3 Complete Diallel Cross of Common Carp (Cyprinus carpi). Shengyan Su,Zaijie Dong,Xuebin Li,Xinhua Yuan,Pao Xu,Zhuang Xie. 2011

[2]QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio). Lv, Weihua,Yan, Yunqin,Lv, Weihua,Zheng, Xianhu,Kuang, Youyi,Cao, Dingchen,Sun, Xiaowen. 2016

[3]Correlation of growth-related traits and their effects on body weight of the mud crab (Scylla paramamosain). Ma, H. Y.,Ma, C. Y.,Ma, L. B.,Xu, Z.,Feng, N. N.,Qiao, Z. G.. 2013

[4]A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Zheng, Xianhu,Kuang, Youyi,Zhang, Xiaofeng,Lu, Cuiyun,Cao, Dingchen,Li, Chao,Sun, Xiaowen,Zheng, Xianhu. 2011

[5]High Throughput Mining and Characterization of Microsatellites from Common Carp Genome. Ji, Peifeng,Zhang, Yan,Zhao, Zixia,Wang, Jian,Li, Jiongtang,Xu, Peng,Sun, Xiaowen,Li, Chao,Sun, Xiaowen. 2012

[6]Genome evolution trend of common carp (Cyprinus carpio L.) as revealed by the analysis of microsatellite loci in a gynogentic family. Zhang, Yan,Liang, Liqun,Jiang, Peng,Li, Dayu,Lu, Cuiyun,Sun, Xiaowen,Zhang, Yan,Jiang, Peng,Li, Dayu. 2008

[7]Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). Xu, Jian,Zhao, Zixia,Li, Jiongtang,Jiang, Yanliang,Zhang, Yan,Li, Qiang,Zhu, Yuanyuan,Liu, Yuanyuan,Xu, Peng,Sun, Xiaowen,Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Sun, Xiaowen,Feng, Jianxin,Li, Chuangju,Yu, Juhua,Xu, Peng. 2014

[8]Use and exchange of aquatic resources relevant for food and aquaculture: common carp (Cyprinus carpio L.). Jeney, Zsigmond,Jian, Zhu. 2009

[9]Development of MHC Class I and II B Primers in Common Carp and its Molecular Characterization. Jia, Zhiying,Chi, Xifeng,Li, Chitao,Shi, Lianyu,Chi, Xifeng. 2010

[10]Accumulation, histopathological effects and response of biochemical markers in the spleens and head kidneys of common carp exposed to atrazine and chlorpyrifos. Wang, Xu,Xing, Houjuan,Jiang, Yan,Xu, Shiwen,Xing, Houjuan,Sun, Gang,Wu, Hongda,Xu, Qiyou. 2013

[11]A Consensus Linkage Map Provides Insights on Genome Character and Evolution in Common Carp (Cyprinus carpio L.). Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Li, Chao,Cao, Dingchen,Lu, Cuiyun,Sun, Xiaowen,Zhang, Yan,Zhao, Zixia,Zhao, Lan,Jiang, Li,Xu, Peng. 2013

[12]Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). Wang, Jin-Tu,Li, Jiong-Tang,Sun, Xiao-Wen,Wang, Jin-Tu,Zhang, Xiao-Feng. 2012

[13]Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs. Zhu, Ya-Ping,Xue, Wei,Wang, Jin-Tu,Wan, Yu-Mei,Xu, Peng,Zhang, Yan,Li, Jiong-Tang,Sun, Xiao-Wen,Zhu, Ya-Ping,Xue, Wei,Wang, Jin-Tu,Wang, Shao-Lin. 2012

[14]A genetic linkage map of common carp (Cyprinus carpio L.) And mapping of a locus associated with cold tolerance. Sun, XW,Liang, LQ. 2004

[15]Genome-wide characterization of Toll-like receptor gene family in common carp (Cyprinus carpio) and their involvement in host immune response to Aeromonas hydrophila infection. Gong, Yiwen,Feng, Shuaisheng,Li, Shangqi,Zhang, Yan,Zhao, Zixia,Jiang, Yanliang,Gong, Yiwen,Hu, Mou,Jiang, Yanliang,Xu, Peng. 2017

[16]Phylogeny and Evolution of Multiple Common Carp (Cyprinus carpio L.) Populations Clarified by Phylogenetic Analysis Based on Complete Mitochondrial Genomes. Dong, Chuanju,Xu, Jian,Wang, Baosen,Sun, Xiaowen,Xu, Peng,Dong, Chuanju,Xu, Jian,Wang, Baosen,Sun, Xiaowen,Xu, Peng,Dong, Chuanju,Feng, Jianxin,Jeney, Zsigmond.

[17]Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices. Liu, Yingjuan,Zhang, Chunyun,Yin, Guojun,Du, Jinliang,Jia, Rui,Cao, Liping,Xu, Pao,Yin, Guojun,Du, Jinliang,Jia, Rui,Cao, Liping,Xu, Pao,Yin, Guojun,Jeney, Galina,Teraoka, Hiroki.

[18]Microsatellite-centromere mapping in common carp through half-tetrad analysis in diploid meiogynogenetic families. Feng, Xiu,Wang, Xinhua,Yu, Xiaomu,Tong, Jingou,Feng, Xiu,Wang, Xinhua,Zhang, Xiaofeng,Lu, Cuiyun,Sun, Xiaowen.

[19]Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis. Zhao, Zi-Xia,Xu, Peng,Deng, Hai-Xia,Zhang, Yan,Xu, Li-Ming,Li, Jiong-Tang,Xu, Jian,Sun, Xiao-Wen,Cao, Ding-Chen,Kuang, You-Yi,Sun, Xiao-Wen.

[20]Diversification of the duplicated Rab1a genes in a hypoxia-tolerant fish, common carp (Cyprinus carpio). Zhao, Zi-Xia,Xu, Jian,Xu, Ru,Li, Jiong-Tang,Zhang, Yan,Xu, Peng,Sun, Xiao-Wen,Cao, Ding-Chen,Sun, Xiao-Wen.

作者其他论文 更多>>